bzoj 3812 主旋律

这题好难啊 为什么dp都这么难 计数问题  好像完全不会啊

这是wc2015 陈老师讲的题

我们可以先考虑把这个点集拆成多个强连通分量 如果强连通分量的数量大于2 那么这一个生成子图对答案是没有贡献的

对于两个强连通分量从 拆出来的那一个 向其他的连边 是不会把两个强连通分量缩在一起的

考虑容斥?? 复杂度貌似有点高 要枚举每一个强连通分量

极强无比的做法::

  1. f[S]表示点集S的生成子图强联通的方案数
  2. g[S]表示点集S的生成子图G中,若G的所有联通块都强联通,则G对g[S]存在一个贡献
  3. 如果G中有奇数个连通块,则对g[S]的贡献为+1,否则为-1
  4. h[S]表示点集S的诱导子图中有多少条边
  5. f[S]=2^h[S]-Σ[T是S的非空子集]2^cnt*g[T]
  6. 其中cnt=|{x->y|x∈S,y∈S-T}|
  7. (注意此时的g[S]不包含整个S强联通的情况)

lef 即S-T

h[i^j]+w[j] 即cnt

(f[i]+=mod-pows[h[i^j]+w[j]]*g[j]%mod)%=mod;

for(int j=lef;j;(--j)&=lef)
    (g[i]+=mod-f[i^j]*g[j]%mod)%=mod;

核心代码以给出

可是我总觉得这一类dp题 再出来我好像还是不太会做 开始怀疑做dp题看题解的意义

 1 #include <bits/stdc++.h>
 2 #define breaks printf("!")
 3 #define ll long long
 4 #define mod 1000000007
 5 using namespace std;
 6
 7 int n,m,num[1<<8];
 8 int cd[1<<15],rd[1<<15];
 9 ll f[1<<15],g[1<<15],h[1<<15],pows[16*16];
10 inline Counts(int x){return num[x>>8]+num[x&255];}
11 int main()
12 {
13     scanf("%d%d",&n,&m);
14     for(int i=1;i<(1<<8);i++)
15         num[i]=num[i>>1]+(i&1);
16     pows[0]=1;for(int i=1;i<=m;i++) pows[i]=(pows[i-1]<<1)%mod;
17     for(int i=1;i<=m;i++)
18     {
19         int x,y; scanf("%d%d",&x,&y);
20         cd[1<<(x-1)]|=1<<(y-1); rd[1<<(y-1)]|=1<<(x-1);
21     }
22     //for(int i=1;i<=m;i++) printf("%d ",num[i]); printf("\n");
23     for(int i=1;i<1<<n;i++)
24     {
25         int one=i&-i,lef=i^one;
26         h[i]=h[lef]+Counts(rd[one]&lef)+Counts(cd[one]&lef);
27         for(int j=lef;j;(--j)&=lef)
28             (g[i]+=mod-f[i^j]*g[j]%mod)%=mod;
29         static int w[1<<15];
30         f[i]=pows[h[i]];
31         //breaks;
32         for(int j=i;j;(--j)&=i)
33         {
34             if(j==i) w[j]=0;
35             else
36             {
37                 int tmp=(i^j)&-(i^j);
38                 w[j]=w[j^tmp]-Counts((i^j)&rd[tmp])+Counts(j&cd[tmp]);
39             }
40             (f[i]+=mod-pows[h[i^j]+w[j]]*g[j]%mod)%=mod;
41         }
42         g[i]+=f[i]; g[i]%=mod;
43     }
44     printf("%lld\n",f[(1<<n)-1]);
45     return 0;
46 }
时间: 2024-10-19 09:03:32

bzoj 3812 主旋律的相关文章

BZOJ 3812 主旋律 状压DP+容斥原理

题目大意:给定一张无向图,求这张无向图的生成子图中有多少强连通图 正着做不好做,我们考虑容斥原理 如果一个图不连通,那么这张图缩点之后一定会形成一个点数>=2的DAG 一个DAG中一定会有一些入度为0的点,我们枚举这些点的点集进行容斥 具体DP方程和细节见代码 注释写的还是比较详细的我就不多说了= = #include <cstdio> #include <cstring> #include <iostream> #include <algorithm>

计数类问题专题

主要是前两天被uoj的毛爷爷的题虐的不轻,心里很不爽啊,必须努力了,, 计数类问题分为:1.组合数学及数论计数 2.dp:状态压缩dp,插头轮廓线dp,树形dp,数位dp,普通dp 3.容斥原理 4.polya原理 5.图论计数 6.生成函数 7.其它(生成树计数等等) 本文主要研究前3个内容 考虑基本计数原理:加法原理,减法原理,乘法原理,除法原理 计数的基本原则:结果不重不漏 加法原理比较自然,中间过程有时减法原理 考虑到无向,有向图的各种量值(生成树之类)计数,状态压缩dp解决 论文:ht

BZOJ 1013: [JSOI2008]球形空间产生器sphere

二次联通门 : BZOJ 1013: [JSOI2008]球形空间产生器sphere /* BZOJ 1013: [JSOI2008]球形空间产生器sphere 高斯消元 QAQ SB的我也能终于能秒题了啊 设球心的坐标为(x,y,z...) 那么就可以列n+1个方程,化化式子高斯消元即可 */ #include <cstdio> #include <iostream> #include <cstring> #define rg register #define Max

bzoj 3309 DZY Loves Math - 莫比乌斯反演 - 线性筛

对于正整数n,定义f(n)为n所含质因子的最大幂指数.例如f(1960)=f(2^3 * 5^1 * 7^2)=3, f(10007)=1, f(1)=0. 给定正整数a,b,求sigma(sigma(f(gcd(i,j)))) (i=1..a, j=1..b). Input 第一行一个数T,表示询问数. 接下来T行,每行两个数a,b,表示一个询问. Output 对于每一个询问,输出一行一个非负整数作为回答. Sample Input 4 7558588 9653114 6514903 445

【BZOJ】[HNOI2009]有趣的数列

[算法]Catalan数 [题解] 学了卡特兰数就会啦>_<! 因为奇偶各自递增,所以确定了奇偶各自的数字后排列唯一. 那么就是给2n个数分奇偶了,是不是有点像入栈出栈序呢. 将做偶数标为-1,做奇数标为+1,显然当偶数多于奇数时不合法,因为它压不住后面的奇数. 然后其实这种题目,打表就可知啦--QAQ 然后问题就是求1/(n+1)*C(2n,n)%p了,p不一定是素数. 参考bzoj礼物的解法. 看到网上清一色的素数筛+分解质因数解法,不解了好久,感觉写了假的礼物-- 后来觉得礼物的做法才比

洛谷 P2709 BZOJ 3781 小B的询问

题目描述 小B有一个序列,包含N个1~K之间的整数.他一共有M个询问,每个询问给定一个区间[L..R],求Sigma(c(i)^2)的值,其中i的值从1到K,其中c(i)表示数字i在[L..R]中的重复次数.小B请你帮助他回答询问. 输入输出格式 输入格式: 第一行,三个整数N.M.K. 第二行,N个整数,表示小B的序列. 接下来的M行,每行两个整数L.R. 输出格式: M行,每行一个整数,其中第i行的整数表示第i个询问的答案. 输入输出样例 输入样例#1: 6 4 3 1 3 2 1 1 3

BZOJ 1012: [JSOI2008]最大数maxnumber(线段树)

012: [JSOI2008]最大数maxnumber Time Limit: 3 Sec  Memory Limit: 162 MB Description 现在请求你维护一个数列,要求提供以下两种操作:1. 查询操作.语法:Q L 功能:查询当前数列中末尾L个数中的最大的数,并输出这个数的值.限制:L不超过当前数列的长度.2. 插入操作.语法:A n 功能:将n加上t,其中t是最近一次查询操作的答案(如果还未执行过查询操作,则t=0),并将所得结果对一个固定的常数D取模,将所得答案插入到数列

【BZOJ】【1016】【JSOI2008】最小生成树计数

Kruskal/并查集+枚举 唉我还是too naive,orz Hzwer 一开始我是想:最小生成树删掉一条边,再加上一条边仍是最小生成树,那么这两条边权值必须相等,但我也可以去掉两条权值为1和3的,再加上权值为2和2的,不也满足题意吗?事实上,如果这样的话……最小生成树应该是1和2,而不是1和3或2和2!!! 所以呢?所以对于一个图来说,最小生成树有几条边权为多少的边,都是固定的!所以我们可以做一遍Kruskal找出这些边权,以及每种边权出现的次数.然后,对于每种边权,比方说出现了$v_i$

【BZOJ】【2844】albus就是要第一个出场

高斯消元解XOR方程组 srO  ZYF  Orz 膜拜ZYF…… http://www.cnblogs.com/zyfzyf/p/4232100.html 1 /************************************************************** 2 Problem: 2844 3 User: Tunix 4 Language: C++ 5 Result: Accepted 6 Time:252 ms 7 Memory:2052 kb 8 *******