BZOJ 3028: 食物 [生成函数 隔板法 | 广义二项式定理]

3028: 食物

Time Limit: 3 Sec  Memory Limit: 128 MB
Submit: 497  Solved: 331
[Submit][Status][Discuss]

Description

明明这次又要出去旅游了,和上次不同的是,他这次要去宇宙探险!

我们暂且不讨论他有多么NC,他又幻想了他应该带一些什么东西。理所当然的,你当然要帮他计算携带N件物品的方案数。

他这次又准备带一些受欢迎的食物,如:蜜桃多啦,鸡块啦,承德汉堡等等

当然,他又有一些稀奇古怪的限制:

每种食物的限制如下:

承德汉堡:偶数个

可乐:0个或1个

鸡腿:0个,1个或2个

蜜桃多:奇数个

鸡块:4的倍数个

包子:0个,1个,2个或3个

土豆片炒肉:不超过一个。

面包:3的倍数个

注意,这里我们懒得考虑明明对于带的食物该怎么搭配着吃,也认为每种食物都是以‘个’为单位(反正是幻想嘛),只要总数加起来是N就算一种方案。因此,对于给出的N,你需要计算出方案数,并对10007取模。


生成函数系数方案数,次数选择个数(不要漏掉不选 x0=1)

每个的生成函数乘起来得到x/(1-x)4

然后广义二项式定理(并不知道该怎么用)....变形x*(1+x+x2+x3+...),n次项系数就是把n个数分成4组每组可以为空,用隔板法,板子和数一起选两个为板子

C(n+3,3)

乘x考虑系数变化,就是n--

[update:2017-05-03]

今天重新想了一下怎么用广义二项式定理做

最后是求$\frac{x}{(1-x)^4}$的n次项系数,就是$(1-x)^{-4}$的n-1次项系数

用广义二项式定理展开,系数就是$\binom{-4}{n}(-x)^n$

n次项系数为 $ \binom{-4}{n} = \frac{ (n+1)(n+2)(n+3) }{3!} $

#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
const int N=505,MOD=10007;
int n,a;
char s[N];
int main(){
    scanf("%s",s+1);
    n=strlen(s+1);
    for(int i=1;i<=n;i++) a=(a*10+s[i]-‘0‘)%MOD;
    printf("%d",a*(a+1)%MOD*(a+2)%MOD*1668%MOD);
}
时间: 2024-10-29 10:46:35

BZOJ 3028: 食物 [生成函数 隔板法 | 广义二项式定理]的相关文章

【bzoj3028】 食物 生成函数+隔板法

题目传送门:https://www.lydsy.com/JudgeOnline/problem.php?id=3028 这题的推导很妙啊,裸的推母函数的题. 我们首先构造出每种食物的母函数: 汉堡:$1+x^2+x^4+……=\frac{1}{1-x^2}$ 可乐:$1+x=\frac{1-x^2}{1-x}$ 鸡腿:$1+x+x^2=\frac{1-x^3}{1-x}$ 蜜桃:$x+x^3+x^5+......=\frac{x}{1-x^2}$ 鸡块:$1+x^4+x^8+......=\fr

BZOJ 3028 食物 ——生成函数

把所有东西的生成函数搞出来. 发现结果是x*(1-x)^(-4) 然后把(1-x)^(-4)求逆,得到(1+x+x^2+...)^4 然后考虑次数为n的项前的系数,就相当于选任意四个非负整数构成n的方案数. 大概就是C(n+3,3) 前面还有一项是x,所以n--即可. 然后就A掉了. #include <cstdio> #include <cstring> #define ll long long const int inv=1668; const int md=10007; in

BZOJ 3028 食物 生成函数

Description 明明这次又要出去旅游了,和上次不同的是,他这次要去宇宙探险!我们暂且不讨论他有多么NC,他又幻想了他应 该带一些什么东西.理所当然的,你当然要帮他计算携带N件物品的方案数.他这次又准备带一些受欢迎的食物, 如:蜜桃多啦,鸡块啦,承德汉堡等等当然,他又有一些稀奇古怪的限制:每种食物的限制如下: 承德汉堡:偶数个 可乐:0个或1个 鸡腿:0个,1个或2个 蜜桃多:奇数个 鸡块:4的倍数个 包子:0个,1个,2个或3个 土豆片炒肉:不超过一个. 面包:3的倍数个 注意,这里我们

bzoj 3028 食物——生成函数

题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3028 把式子写出来,化一化,变成 x / ((1-x)^4) ,变成几个 sigma 相乘的样子,用组合意义看一下第 n 项的系数,就是 n-1 的可以不选的划分,即 C( n-1+3,3 ) .为了高精度方便,化成 (n+2)*(n+1)*n/6 . 别忘了取模. 注意读入高精度数字的方法.错了几次之后只会一位一位地读了-- #include<iostream> #include<

bzoj 3028: 食物 -- 母函数

3028: 食物 Time Limit: 3 Sec  Memory Limit: 128 MB Description 明明这次又要出去旅游了,和上次不同的是,他这次要去宇宙探险! 我们暂且不讨论他有多么NC,他又幻想了他应该带一些什么东西.理所当然的,你当然要帮他计算携带N件物品的方案数. 他这次又准备带一些受欢迎的食物,如:蜜桃多啦,鸡块啦,承德汉堡等等 当然,他又有一些稀奇古怪的限制: 每种食物的限制如下: 承德汉堡:偶数个 可乐:0个或1个 鸡腿:0个,1个或2个 蜜桃多:奇数个 鸡块

[BZOJ 3028]食物(生成函数)

Description 明明这次又要出去旅游了,和上次不同的是,他这次要去宇宙探险! 我们暂且不讨论他有多么NC,他又幻想了他应该带一些什么东西.理所当然的,你当然要帮他计算携带N件物品的方案数. 他这次又准备带一些受欢迎的食物,如:蜜桃多啦,鸡块啦,承德汉堡等等 当然,他又有一些稀奇古怪的限制: 每种食物的限制如下: 承德汉堡:偶数个 可乐:0个或1个 鸡腿:0个,1个或2个 蜜桃多:奇数个 鸡块:4的倍数个 包子:0个,1个,2个或3个 土豆片炒肉:不超过一个. 面包:3的倍数个 注意,这里

BZOJ 3028 食物 组合数学

题目大意:简单易懂自己看- - 去学了下母函数相关的东西- - 其实不难理解嘛- - 的说- - #include <cstdio> #include <cstring> #include <iostream> #include <algorithm> #define M 510 #define MOD 10007 using namespace std; int n; char s[M]; int main() { int i; scanf("%

【BZOJ 3028】 3028: 食物 (生成函数)

3028: 食物 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 569  Solved: 382 Description 明明这次又要出去旅游了,和上次不同的是,他这次要去宇宙探险! 我们暂且不讨论他有多么NC,他又幻想了他应该带一些什么东西.理所当然的,你当然要帮他计算携带N件物品的方案数. 他这次又准备带一些受欢迎的食物,如:蜜桃多啦,鸡块啦,承德汉堡等等 当然,他又有一些稀奇古怪的限制: 每种食物的限制如下: 承德汉堡:偶数个 可乐:0个或1

【BZOJ 3028】 食物

3028: 食物 Time Limit: 3 Sec Memory Limit: 128 MB Submit: 296 Solved: 185 [Submit][Status][Discuss] Description 明明这次又要出去旅游了,和上次不同的是,他这次要去宇宙探险! 我们暂且不讨论他有多么NC,他又幻想了他应该带一些什么东西.理所当然的,你当然要帮他计算携带N件物品的方案数. 他这次又准备带一些受欢迎的食物,如:蜜桃多啦,鸡块啦,承德汉堡等等 当然,他又有一些稀奇古怪的限制: 每种