数据挖掘总结:SVM

数据挖掘总结:SVM的相关文章

机器学习与数据挖掘-支持向量机(SVM)(一)

最近在看斯坦福大学的机器学习的公开课,学习了支持向量机,再结合网上各位大神的学习经验总结了自己的一些关于支持向量机知识. 一.什么是支持向量机(SVM)? 1.支持向量机(Support Vector Machine,常简称为SVM)是一种监督式学习的方法,可广泛地应用于统计分类以及回归分析.支持向量机属于一般化线性分类器,这族分类器的特点是他们能够同时最小化经验误差与最大化几何边缘区,因此支持向量机也被称为最大边缘区分类器. 2.支持向量机将向量映射到一个更高维的空间里,在这个空间里建立有一个

Python数据挖掘—分类—SVM

概念: 支持向量机(Support Vector Machine) SVM属于一般化线性分类器,这类分类器的特点是他们能够同时最小化经验误差和最大化几何边缘区,因此支持向量机也被称为最大边缘区分类器. 原文地址:https://www.cnblogs.com/U940634/p/9746371.html

数据挖掘算法学习(七)SVM

SVM,支持向量机.数据挖掘中的一个经典算法,博主学了挺久,把学到的一些东西跟大家分享一下. 支持向量机(SVM,Support Vector Machine)是在高维特征空间使用线性函数假设空间的学习系统,它由一个来自最优化理论的学习算法训练,该算法实现了一个由统计学习理论到处的学习偏置.此学习策略由Vapnik和他的合作者提出,是一个准则性的 并且强有力的方法.在它提出来的若干年来,在范围广大的应用中,SVM的性能胜过其他大多数的学习系统. 一.主要思想 建立一个最优决策超平面,使得该平面两

在R中使用支持向量机(SVM)进行数据挖掘(下)

书接上文 在R中使用支持向量机(SVM)进行数据挖掘(上) http://blog.csdn.net/baimafujinji/article/details/49885481 第二种使用svm()函数的方式则是根据所给的数据建立模型.这种方式形式要复杂一些,但是它允许我们以一种更加灵活的方式来构建模型.它的函数使用格式如下(注意我们仅列出了其中的主要参数). svm(x, y = NULL, scale = TRUE, type = NULL, kernel = "radial",

在R中使用支持向量机(SVM)进行数据挖掘(上)

在R中,可以使用e1071软件包所提供的各种函数来完成基于支持向量机的数据分析与挖掘任务.请在使用相关函数之前,安装并正确引用e1071包.该包中最重要的一个函数就是用来建立支持向量机模型的svm()函数.我们将结合后面的例子来演示它的用法. 下面这个例子中的数据源于1936年费希尔发表的一篇重要论文.彼时他收集了三种鸢尾花(分别标记为setosa.versicolor和virginica)的花萼和花瓣数据.包括花萼的长度和宽度,以及花瓣的长度和宽度.我们将根据这四个特征来建立支持向量机模型从而

数据挖掘入门系列教程(八点五)之SVM介绍以及从零开始推导公式

目录 SVM介绍 线性分类 间隔 最大间隔分类器 拉格朗日乘子法(Lagrange multipliers) 拉格朗日乘子法推导 KKT条件(Karush-Kuhn-Tucker Conditions) 拉格朗日乘子法对偶问题 Slater 条件 最大间隔分类器与拉格朗日乘子法 核技巧 核函数 软间隔 软间隔支持向量机推导 SMO算法 SMO变量的选择方法 总结 参考 还是老规矩,这一篇博客是对SVM进行介绍,下一篇博客就是使用SVM进行具体的使用. SVM介绍 首先介绍SVM是什么,SVM(s

R语言数据挖掘实战系列(2)

二.R语言简介 R语言是一种为统计计算和图形显示而设计的语言环境,具有免费.多平台支持,同时可以从各种类型的数据源中导入数据,具有较高的开放性以及高水准的制图功能.R是一个体系庞大的应用软件,主要包括核心的R标准包和各专业领域的其他包.R在数据分析.数据挖掘领域具有特别优势. R安装 R可在其主页(https://www.r-project.org/)上获得,根据所选择的平台进行下载安装.安装完成之后启动R.为了方便使用R,可使用免费的图形界面编辑器RStudio,可从https://www.r

SVM整理

SVM整理 Last modified: 2015.9.2 1.算法总结 支持向量机是Cortes和Vapnik于1995年首先提出的,它在解决小样本,非线性及高维模式识别中表现出许多特有的优势,并能够推广应用到函数拟合等其他机器学习问题中. SVM方法是建立在统计学习理论的VC维理论和结构风险最小原理基础上的,根据有限的样本信息在模型的复杂性(即对特定训练样本的学习精度)和学习能力(即无错误地识别任意样本的能力)之间寻求最佳折衷,以期获得最好的推广能力(或称泛化能力).   1.1进一步小结

数据挖掘十大经典算法

一. C4.5  C4.5算法是机器学习算法中的一种分类决策树算法,其核心算法是ID3 算法.   C4.5算法继承了ID3算法的优点,并在以下几方面对ID3算法进行了改进: 1) 用信息增益率来选择属性,克服了用信息增益选择属性时偏向选择取值多的属性的不足: 2) 在树构造过程中进行剪枝: 3) 能够完成对连续属性的离散化处理: 4) 能够对不完整数据进行处理. C4.5算法有如下优点:产生的分类规则易于理解,准确率较高.其缺点是:在构造树的过程中,需要对数据集进行多次的顺序扫描和排序,因而导