《Linux内核设计与实现》内存管理札记

1.页

芯作为物理页存储器管理的基本单元,MMU(内存管理单元)中的页表,从虚拟内存的角度来看,页就是最小单位。

内核用struct page结构来标识系统中的每个物理页。它的定义例如以下:

flag域用来存放页的状态(是不是脏的。是不是被锁定在内存中等等)。_count表示这一页被引用了多少次。当次数为0时,表示此页没有被引用,于是在新的分配中就能够使用它。virtual域是页的虚拟地址。

2.获得页

内核提供了一种请求内核的底层机制,并提供了对它进行訪问的几个接口。

全部这些接口都以页为单位分配内存,当中最核心的函数是:

该函数分配2的order次方个连续的物理页,并返回一个指针,该指针指向第一个页的page结构体。gfp_mask是一个标识,它能够分为三类:行为修饰符、区修饰符以及类型。它可取的值例如以下:

获得填充为0的页:

分配一个页,让其填充为0,并返回其逻辑地址。

底层页的分配方法总结例如以下:

3.kmalloc()与vmalloc()

kmalloc()函数与用户空间malloc()一族函数很类似。它是一个简单的接口。分配以字节为单位的内存块。vmalloc()函数的工作方式类似于kmalloc()函数。仅仅只是vmalloc()函数分配的内存是虚拟地址连续的,而物理地址无需连续。这也是用户空间的分配方式:由malloc()函数返回的页在进程的虚拟地址空间内是连续的,可是,这并不保证它们在物理RAM中也连续。而kmalloc()函数则确保分配的内存在物理地址上是连续的(在虚拟地址上自然也是连续的)。

4.slab层

分配和释放数据结构是全部内核中最普遍的操作之中的一个。为了便于数据的频繁分配和释放,通常实现一个空暇链表。

当须要一个新的数据结构的实例时,就从空暇链表分配一个出来。当不在须要某个数据结构的实例时,则将它放入到空暇链表中。而不需释放它。

这也带来的问题是内核无法全局控制空暇链表。当内核紧缺时,内核无法通知每个空暇链表。让其收缩缓存的大小以释放一些内存出来。为了弥补这一缺陷。Linux提供了slab层,扮演数据结构缓存层的角色。

slab层把不同的对象划分为快速缓存组中。当中每一个快速缓存都存放不同类型的对象。每种对象类型相应一个快速缓存。比如,一个快速缓存用于存放进程描写叙述符(task_struct结构),而还有一个快速缓存存放索引节点对象(struct inode)。

然后,这些快速缓存又被划分为slab。slab由一个或多个物理上连续的页组成。每个slab都包括一些对象成员,这里的对象是指被缓存的数据结构。每个缓存都处于三种状态之中的一个:满、部分、空。

作为一个样例,让我们考察一下inode结构,该结构是次配索引节点在内存中的体现。这些数据结构会频繁地创建和释放。因此,struct inode就由inode_cachep快速缓存进行分配。这样的快速缓存由一个或多个slab组成。每一个slab包括尽可能多的对象。当内核请求分配一个新的inode结构时,内核就从部分满的slab或空slab中分配一个inode。下图小时了快速缓存、slab以及对象之间的关系。

每一个快速缓存都是用kmem_cache_s结构来标识的。这个结构包括三个链表slabs_full、slabs_partial、slabs_empty,均放在kmem_list3结构内。链表包括了快速缓存中的全部slab。slab描写叙述符struct slab用来描写叙述每一个slab:

版权声明:本文博主原创文章,博客,未经同意不得转载。

时间: 2024-10-07 18:15:22

《Linux内核设计与实现》内存管理札记的相关文章

Linux内核源代码情景分析-内存管理之slab-回收

在上一篇文章Linux内核源代码情景分析-内存管理之slab-分配与释放,最后形成了如下图的结构: 图 1 我们看到空闲slab块占用的若干页面,不会自己释放:我们是通过kmem_cache_reap和kmem_cache_shrink来回收的.他们的区别是: 1.我们先看kmem_cache_shrink,代码如下: int kmem_cache_shrink(kmem_cache_t *cachep) { if (!cachep || in_interrupt() || !is_chaine

Linux内核源代码情景分析-内存管理

用户空间的页面有下面几种: 1.普通的用户空间页面,包括进程的代码段.数据段.堆栈段.以及动态分配的"存储堆". 2.通过系统调用mmap()映射到用户空间的已打开文件的内容. 3.进程间的共享内存区. 这些页面的的周转有两方面的意思. 1.页面的分配,使用,回收.如进程压栈时新申请的页面,这类页面不进行盘区交换,不使用时释放得以回收. 这部分通过一个场景来解释: Linux内核源代码情景分析-内存管理之用户堆栈的扩展. 2.盘区交换.如要执行硬盘上的对应代码段.把硬盘上的代码段换入内

Linux内核源代码情景分析-内存管理之用户页面的定期换出

我们已经看到在分配页面时,如果页面数不够,那么会调用page_launder,reclaim_page,__free_page将页面换出,并重新投入分配. 为了避免总是在CPU忙碌的时候,也就是在缺页异常发生的时候,临时再来搜寻可供换出的内存页面并加以换出,Linux内核定期地检查并且预先将若干页面换出,腾出空间,以减轻系统在缺页异常发生时的负担. 为此,在Linux内核中设置了一个专司定期将页面换出的"守护神"kswapd和kreclaimd. static int __init k

Linux内核源代码情景分析-内存管理之用户页面的分配

首先介绍几个重要的数据结构. 1.page typedef struct page { struct list_head list; struct address_space *mapping; unsigned long index; struct page *next_hash; atomic_t count; unsigned long flags; /* atomic flags, some possibly updated asynchronously */ struct list_h

Linux内核源代码情景分析-内存管理之用户页面的换入

在下面几种情况下会发生,页面出错异常(也叫缺页中断): 1.相应的页面目录项或者页面表项为空,也就是该线性地址与物理地址的映射关系尚未建立,或者已经撤销. 2.相应的物理页面不在内存中. 本文讨论的就是这种情况. 3.指令中规定的访问方式与页面的权限不符,例如企图写一个"只读"的页面. 假设已经建立好了映射,但是页表项最后一位P为0,表示页面不在内存中:整个页表项如下图,offset表示页面在一个磁盘设备的位置,也就是磁盘设备的逻辑页面号:而type则是指该页面在哪一个磁盘设备中. 图

Linux内核源代码情景分析-内存管理之用户堆栈的扩展

在下面几种情况下会发生,页面出错异常(也叫缺页中断): 1.相应的页面目录项或者页面表项为空,也就是该线性地址与物理地址的映射关系尚未建立,或者已经撤销.本文讨论的就是这种情况. 2.相应的物理页面不在内存中. 3.指令中规定的访问方式与页面的权限不符,例如企图写一个"只读"的页面. 首先看下进程地址空间示意图: 假设现在需要调用某个子程序,因此CPU需将返回地址压入堆栈,也就是要将返回地址写入虚拟空间地址为(%esp-4)的地方.可是,在我们这个情景中地址(%esp-4)落入了空洞中

Linux内核源代码情景分析-内存管理之slab-分配与释放

首先说缓存区的数据结构: struct kmem_cache_s { /* 1) each alloc & free */ /* full, partial first, then free */ struct list_head slabs;//指向所有的slab块链表,前面是完全块,然后是非完全块,最后是空闲块 struct list_head *firstnotfull;//指向第一个非完全块,如果没有非完全块,就指向上面的slabs unsigned int objsize;//对象的大

Linux内核源代码情景分析-内存管理之恢复映射

refill_inactive_scan和swap_out,把活跃的页面变成不活跃脏的页面.挑选的原则是最近没有被访问,且age小于0. page_launder,把不活跃脏的页面变成不活跃干净的页面. 不活跃脏的页面,有如下特点: 使用计数为1: page->list链入mapping->dirty_pages/clean_pages: page->next_hash和page->pprev_hash链入全局的Hash表: page->lru链入了全局的inactive_d

《Linux内核设计与实现》读书笔记(十二)- 内存管理

内核的内存使用不像用户空间那样随意,内核的内存出现错误时也只有靠自己来解决(用户空间的内存错误可以抛给内核来解决). 所有内核的内存管理必须要简洁而且高效. 主要内容: 内存的管理单元 获取内存的方法 获取高端内存 内核内存的分配方式 总结 1. 内存的管理单元 内存最基本的管理单元是页,同时按照内存地址的大小,大致分为3个区. 1.1 页 页的大小与体系结构有关,在 x86 结构中一般是 4KB或者8KB. 可以通过 getconf 命令来查看系统的page的大小: [[email prote

读薄「Linux 内核设计与实现」(2) - 进程管理和调度

这篇文章是<读薄「Linux 内核设计与实现」>系列文章的第 II 篇,本文主要讲了以下问题:进程管理的任务.进程管理与其他模块的依赖关系.进程描述符和任务队列.进程的创建.线程的实现.进程的终止.进程调度. 0x00 进程管理的任务 进程能创建新的进程(通过复制现有进程) 确定哪个进程能拥有 CPU 接受中断并将中断导向相应的内核子系统 管理时钟硬件 当一个进程结束时释放其资源 动态装载执行模块 0x01 进程管理与其他模块的依赖关系 I 进程模块的内外界面 对用户进程提供了一组简单的系统调