转:5种排序算法性能比较总结

1 概述

本文对比较常用且比较高效的排序算法进行了总结和解析,并贴出了比较精简的实现代码,包括选择排序、插入排序、归并排序、希尔排序、快速排序等。算法性能比较如下图所示:

2 选择排序

选择排序的第一趟处理是从数据序列所有n个数据中选择一个最小的数据作为有序序列中的第1个元素并将它定位在第一号存储位置,第二趟处理从数据序列的n-1个数据中选择一个第二小的元素作为有序序列中的第2个元素并将它定位在第二号存储位置,依此类推,当第n-1趟处理从数据序列的剩下的2个元素中选择一个较小的元素作为有序序列中的最后第2个元素并将它定位在倒数第二号存储位置,至此,整个的排序处理过程就已完成。

代码如下:

public class SelectionSort {
    public void selectionSort(int[] array) {
        int temp;
        for (int i = 0; i < array.length - 1; i++) {
            for (int j = i + 1; j <= array.length - 1; j++) {// 第i个和第j个比较j可以取到最后一位,所以要用j<=array.length-1
                if (array[i] > array[j]) {// 注意和冒泡排序的区别,这里是i和j比较。
                    temp = array[i];
                    array[i] = array[j];
                    array[j] = temp;
                }
            }
            // 打印每趟排序结果
            for (int m = 0; m <= array.length - 1; m++) {
                System.out.print(array[m] + "\t");
            }
            System.out.println();
        }
    }

    public static void main(String[] args) {
        SelectionSort selectionSort = new SelectionSort();
        int[] array = { 5, 69, 12, 3, 56, 789, 2, 5648, 23 };
        selectionSort.selectionSort(array);
        for (int m = 0; m <= array.length - 1; m++) {
            System.out.print(array[m] + "\t");
        }
    }
}

3 插入排序

直接插入排序法的排序原则是:将一组无序的数字排列成一排,左端第一个数字为已经完成排序的数字,其他数字为未排序的数字。然后从左到右依次将未排序的数字插入到已排序的数字中。

代码如下:

public class InsertSort {
    public void insertSort(int[] array, int first, int last) {
        int temp, i, j;
        for (i = first + 1; i <= last - 1; i++) {// 默认以第一个数为有序序列,后面的数为要插入的数。
            temp = array[i];
            j = i - 1;
            while (j >= first && array[j] > temp) {// 从后进行搜索如果搜索到的数小于temp则该数后移继续搜索,直到搜索到小于或等于temp的数即可
                array[j + 1] = array[j];
                j--;
            }
            array[j + 1] = temp;
            // 打印每次排序结果
            for (int m = 0; m <= array.length - 1; m++) {
                System.out.print(array[m] + "\t");
            }
            System.out.println();
        }
    }

    public static void main(String[] args) {
        InsertSort insertSort = new InsertSort();
        int[] array = { 5, 69, 12, 3, 56, 789, 2, 5648, 23 };
        insertSort.insertSort(array, 0, array.length);// 注意此处是0-9而不是0-8
        for (int i = 0; i <= array.length - 1; i++) {
            System.out.print(array[i] + "\t");
        }
    }
}

4 归并排序

算法描述:

把序列分成元素尽可能相等的两半。

把两半元素分别进行排序。

把两个有序表合并成一个。

代码如下:

public class MergeSortTest {
    public void sort(int[] array, int left, int right) {
        if (left >= right)
            return;
        // 找出中间索引
        int center = (left + right) / 2;
        // 对左边数组进行递归
        sort(array, left, center);
        // 对右边数组进行递归
        sort(array, center + 1, right);
        // 合并
        merge(array, left, center, right);
        // 打印每次排序结果
        for (int i = 0; i < array.length; i++) {
            System.out.print(array[i] + "\t");
        }
        System.out.println();

    }

    /**
     * 将两个数组进行归并,归并前面2个数组已有序,归并后依然有序
     * 
     * @param array
     *            数组对象
     * @param left
     *            左数组的第一个元素的索引
     * @param center
     *            左数组的最后一个元素的索引,center+1是右数组第一个元素的索引
     * @param right
     *            右数组最后一个元素的索引
     */
    public void merge(int[] array, int left, int center, int right) {
        // 临时数组
        int[] tmpArr = new int[array.length];
        // 右数组第一个元素索引
        int mid = center + 1;
        // third 记录临时数组的索引
        int third = left;
        // 缓存左数组第一个元素的索引
        int tmp = left;
        while (left <= center && mid <= right) {
            // 从两个数组中取出最小的放入临时数组
            if (array[left] <= array[mid]) {
                tmpArr[third++] = array[left++];
            } else {
                tmpArr[third++] = array[mid++];
            }
        }
        // 剩余部分依次放入临时数组(实际上两个while只会执行其中一个)
        while (mid <= right) {
            tmpArr[third++] = array[mid++];
        }
        while (left <= center) {
            tmpArr[third++] = array[left++];
        }
        // 将临时数组中的内容拷贝回原数组中
        // (原left-right范围的内容被复制回原数组)
        while (tmp <= right) {
            array[tmp] = tmpArr[tmp++];
        }
    }

    public static void main(String[] args) {
        int[] array = new int[] { 5, 69, 12, 3, 56, 789, 2, 5648, 23 };
        MergeSortTest mergeSortTest = new MergeSortTest();
        mergeSortTest.sort(array, 0, array.length - 1);
        System.out.println("排序后的数组:");
        for (int m = 0; m <= array.length - 1; m++) {
            System.out.print(array[m] + "\t");
        }
    }
}

5 希尔排序

希尔排序又称“缩小增量排序”,该方法的基本思想是:先将整个待排元素序列分割成若干个子序列(由相隔某 个“增量”的元素组成的)分别进行直接插入排序,然后依次缩减增量再进行排序,待整个序列中的元素基本有序(增量足够小)时,再对全体元素进行一次直接插 入排序。因为直接插入排序在元素基本有序的情况下(接近最好情况),效率是很高的,因此希尔排序在时间效率上比前两种方法有较大提高。

代码如下:

public class ShellSort {
    public void shellSort(int[] array, int n) {
        int i, j, gap;
        int temp;
        for (gap = n / 2; gap > 0; gap /= 2) {// 计算gap大小
            for (i = gap; i < n; i++) {// 将数据进行分组
                for (j = i - gap; j >= 0 && array[j] > array[j + gap]; j -= gap) {// 对每组数据进行插入排序
                    temp = array[j];
                    array[j] = array[j + gap];
                    array[j + gap] = temp;
                }
                // 打印每趟排序结果
                for (int m = 0; m <= array.length - 1; m++) {
                    System.out.print(array[m] + "\t");
                }
                System.out.println();
            }
        }
    }

    public static void main(String[] args) {
        ShellSort shellSort = new ShellSort();
        int[] array = { 5, 69, 12, 3, 56, 789, 2, 5648, 23 };
        shellSort.shellSort(array, array.length);// 注意为数组的个数
        for (int m = 0; m <= array.length - 1; m++) {
            System.out.print(array[m] + "\t");
        }
    }
}

6 快速排序

快速排序(Quicksort)是对冒泡排序的一种改进。由C. A. R. Hoare在1962年提出。它的基本思想是:通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然 后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列。

代码如下:

public class QuickSort {
    public int partition(int[] sortArray, int low, int height) {
        int key = sortArray[low];// 刚开始以第一个数为标志数据
        while (low < height) {
            while (low < height && sortArray[height] >= key)
                height--;// 从后面开始找,找到比key值小的数为止
            sortArray[low] = sortArray[height];// 将该数放到key值的左边
            while (low < height && sortArray[low] <= key)
                low++;// 从前面开始找,找到比key值大的数为止
            sortArray[height] = sortArray[low];// 将该数放到key值的右边
        }
        sortArray[low] = key;// 把key值填充到low位置,下次重新找key值
        // 打印每次排序结果
        for (int i = 0; i <= sortArray.length - 1; i++) {
            System.out.print(sortArray[i] + "\t");
        }
        System.out.println();
        return low;
    }

    public void sort(int[] sortArray, int low, int height) {
        if (low < height) {
            int result = partition(sortArray, low, height);
            sort(sortArray, low, result - 1);
            sort(sortArray, result + 1, height);
        }
    }

    public static void main(String[] args) {
        QuickSort quickSort = new QuickSort();
        int[] array = { 5, 69, 12, 3, 56, 789, 2, 5648, 23 };
        for (int i = 0; i <= array.length - 1; i++) {
            System.out.print(array[i] + "\t");
        }
        System.out.println();
        quickSort.sort(array, 0, 8);
        for (int i = 0; i <= array.length - 1; i++) {
            System.out.print(array[i] + "\t");
        }
    }
}
时间: 2024-10-31 19:24:34

转:5种排序算法性能比较总结的相关文章

总结N种排序算法及实现

排序算法是一个简单的问题,但在此问题上却有大量的研究!当前的排序算法通常按照如下四个方面进行分类(或是评价): 1.时间复杂度:一个排序算法的理想性能是O(n).一般而言,好的性能O(nlogn),坏的性能O(n2). 2.空间复杂度(内存使用量) 3.稳定性:稳定的排序算法会让原本有相等键值的记录维持原本的相对次序. 4.排序方式:插入.交换.选择.合并等 一.冒泡排序:这个算法的名字由来是因为越小的元素会经由交换慢慢“浮”到数列的顶端. 步骤:1.比较相邻的两个元素,如果第一个比第二个大,就

12种排序算法:原理、图解、动画视频演示、代码以及笔试面试题目中的应用

出处:http://blog.csdn.net/han_xiaoyang/article/details/12163251. 声明:版权所有,转载请注明出处,谢谢. 0.前言 从这一部分开始直接切入我们计算机互联网笔试面试中的重头戏算法了,初始的想法是找一条主线,比如数据结构或者解题思路方法,将博主见过做过整理过的算法题逐个分析一遍(博主当年自己学算法就是用这种比较笨的刷题学的,囧),不过又想了想,算法这东西,博主自己学的过程中一直深感,基础还是非常重要的,很多难题是基础类数据结构和题目的思想综

数据结构实践——大数据集上排序算法性能的体验

本文是针对[数据结构基础系列(9):排序]的实践项目. [项目 - 大数据集上排序算法性能的体验] 设计一个函数,产生一个至少5万条记录的数据集合.在同一数据集上,用直接插入排序.冒泡排序.快速排序.直接选择排序.堆排序.归并排序.基数排序等算法进行排序,记录所需要的时间,经过对比,得到对复杂度不同的各种算法在运行时间方面的感性认识. 提示1:这一项目需要整合多种排序算法,可以考虑先建设排序算法库,作为我们这门课算法库的收官之作: 提示2:本项目旨在获得对于复杂度不同算法的感性认识,由于数据分布

13种排序算法详解

0.前言 从这一部分开始直接切入我们计算机互联网笔试面试中的重头戏算法了,初始的想法是找一条主线,比如数据结构或者解题思路方法,将博主见过做过整理过的算法题逐个分析一遍(博主当年自己学算法就是用这种比较笨的刷题学的,囧),不过又想了想,算法这东西,博主自己学的过程中一直深感,基础还是非常重要的,很多难题是基础类数据结构和题目的思想综合发散而来.比如说作为最基本的排序算法就种类很多,而事实上笔试面试过程中发现掌握的程度很一般,有很多题目,包括很多算法难题,其母题或者基本思想就是基于这些经典算法的,

Java常见的几种排序算法-插入、选择、冒泡、快排、堆排等

本文就是介绍一些常见的排序算法.排序是一个非常常见的应用场景,很多时候,我们需要根据自己需要排序的数据类型,来自定义排序算法,但是,在这里,我们只介绍这些基础排序算法,包括:插入排序.选择排序.冒泡排序.快速排序(重点).堆排序.归并排序等等.看下图: 给定数组:int data[] = {9,2,7,19,100,97,63,208,55,78} 一.直接插入排序(内部排序.O(n2).稳定) 原理:从待排序的数中选出一个来,插入到前面的合适位置. [java] view plain copy

各种排序算法性能比较

插入排序包括直接插入排序.希尔排序. 1.直接插入排序: 如何写成代码: 首先设定插入次数,即循环次数,for(int i=1;i<length;i++),1个数的那次不用插入. 设定插入数和得到已经排好序列的最后一个数的位数.insertNum和j=i-1. 从最后一个数开始向前循环,如果插入数小于当前数,就将当前数向后移动一位. 将当前数放置到空着的位置,即j+1. 代码实现如下: package zhouls.bigdata.DataFeatureSelection; import jav

常见的几种排序算法-插入、选择、冒泡、快排、堆排等

排序是一个非常常见的应用场景,很多时候,我们需要根据自己需要排序的数据类型,来自定义排序算法,但是,在这里,我们只介绍这些基础排序算法,包括:插入排序.选择排序.冒泡排序.快速排序(重点).堆排序.归并排序等等.看下图: 给定数组:int data[] = {9,2,7,19,100,97,63,208,55,78} 一.直接插入排序(内部排序.O(n2).稳定) 原理:从待排序的数中选出一个来,插入到前面的合适位置. package com.xtfggef.algo.sort; public

八种排序算法

最近一段时间自己在研究各种排序算法,于是自己写了一个八种排序算法的集合: /************************************************************************* > Copyright (c)2014 stay hungry,stay foolish !!! > File Name: sort.cpp > Author: kanty > Mail: [email protected] > Created Time:

几种排序算法比较

图解数据结构(10)——排序 十四.排序(Sort) http://www.cppblog.com/guogangj/archive/2009/11/13/100876.html <Thinking in Algorithm>12.详解十一种排序算法 http://blog.csdn.net/speedme/article/details/23021467