uva 12296(切割凸多边形)

题意:有一个长l宽w的矩形,左下角坐标是(0,0),现在有n条线段把这个矩形切割,保证每条线段的两个端点落在矩形不同的边上,把矩形分成了若干区域,现在有m个圆画进矩形,问圆覆盖了哪些区域,并把这些区域的面积排序输出。

题解:先要切割矩形,方法是每读入一条线段都拿去处理切割出的新的区域把原先的区域替换,最后可以得到一个区域的vector,然后判断圆和区域的情况:

1.如果圆没有公共点,可以是圆在某个区域内,或某些区域在圆内。这时需要判断多边形是否有顶点在圆内,或圆心是否在那个多边形内。

2.判断圆和每个区域的交点,如果是线段两个端点在圆上,就用线段中点判断是否在圆内。

#include <cstdio>
#include <cstring>
#include <cmath>
#include <vector>
#include <algorithm>
using namespace std;
const double PI = acos(-1);
const double eps = 1e-9;
struct Point {
    double x, y;
    Point(double x = 0, double y = 0): x(x), y(y) {}
};
typedef Point Vector;
typedef vector<Point> Polygon;
struct Circle {
    Point c;
    double r;
    Circle() {}
    Circle(Point c, double r = 0): c(c), r(r) {}
    Point point(double a) {
        return Point(c.x + cos(a) * r, c.y + sin(a) * c.y);
    }
};
double Sqr(double x) {
    return x * x;
}
double dcmp(double x) {
    if (fabs(x) < eps)
        return 0;
    return x < 0 ? -1 : 1;
}
Vector operator + (const Point& A, const Point& B) {
    return Vector(A.x + B.x, A.y + B.y);
}
Vector operator - (const Point& A, const Point& B) {
    return Vector(A.x - B.x, A.y - B.y);
}
Vector operator * (const Point& A, double a) {
    return Vector(A.x * a, A.y * a);
}
Vector operator / (const Point& A, double a) {
    return Vector(A.x / a, A.y / a);
}
double Cross(const Vector& A, const Vector& B) {
    return A.x * B.y - A.y * B.x;
}
double Dot(const Vector& A, const Vector& B) {
    return A.x * B.x + A.y * B.y;
}
double Length(const Vector& A) {
    return sqrt(Dot(A, A));
}
bool operator < (const Point& A, const Point& B) {
    return A.x < B.x || (A.x == B.x && A.y < B.y);
}
bool operator == (const Point& A, const Point& B) {
    return A.x == B.x && A.y == B.y;
}

//向量A旋转rad弧度,rad负值为顺时针旋转
Point Rotate(Point A, double rad) {
    return Point(A.x * cos(rad) - A.y * sin(rad), A.x * sin(rad) + A.y * cos(rad));
}
//角度转化弧度
double torad(double deg) {
    return deg / 180.0 * PI;
}
//得到两直线交点
Point GetLineIntersection(Point P, Point v, Point Q, Point w) {
    Point u = P - Q;
    double t = Cross(w, u) / Cross(v, w);
    return P + v * t;
}
//点p到线段AB的距离
double DistanceToSegment(Point p, Point A, Point B) {
    if (A == B)
        return Length(p - A);
    Point AB = B - A, AP = p - A, BP = p - B;
    if (dcmp(Dot(AB, AP)) < 0)
        return Length(AP);
    else if (dcmp(Dot(AB, BP)) > 0)
        return Length(BP);
    else
        return fabs(Cross(AB, AP)) / Length(AB);
}
//判断两个线段是否有交点(不包括端点)
bool SegmentProperIntersection(const Point& a1, const Point& a2, const Point& b1, const Point& b2) {
    double c1 = Cross(a2 - a1, b1 - a1);
    double c2 = Cross(a2 - a1, b2 - a1);
    double c3 = Cross(b2 - b1, a1 - b1);
    double c4 = Cross(b2 - b1, a2 - b1);
    return dcmp(c1) * dcmp(c2) < 0 && dcmp(c3) * dcmp(c4) < 0;
}
//判断点p是否在线段a1--a2上(不包括端点)
bool OnSegment(const Point& p, const Point& a1, const Point& a2) {
    return dcmp(Cross(a1 - p, a2 - p)) == 0 && dcmp(Dot(a1 - p, a2 - p)) < 0;
}
//求多边形面积
double PolygonArea(Polygon res) {
    double area = 0;
    int m = res.size();
    for (int i = 1; i < m - 1; i++)
        area += Cross(res[i] - res[0], res[i + 1] - res[0]);
    return area / 2;
}
bool isPointInPolygon(Point p, Polygon res) {
    int wn = 0, cnt = res.size();
    for (int i = 0; i < cnt; i++) {
        if (res[i] == p || res[(i + 1) % cnt] == p || OnSegment(p, res[i], res[(i + 1) % cnt]))
            return 1;//边界上
        int k = dcmp(Cross(res[(i + 1) % cnt] - res[i], p - res[i]));
        int d1 = dcmp(res[i].y - p.y);
        int d2 = dcmp(res[(i + 1) % cnt].y - p.y);
        if (k > 0 && d1 <= 0 && d2 > 0)
            wn++;
        if (k < 0 && d2 <= 0 && d1 > 0)
            wn--;
    }
    if (wn)
        return 1;//内部
    return 0;//外部
}
bool isPointInCircle(Point p, Point center, double r) {
    return dcmp(Length(p - center) - r) < 0;
}
//圆和直线的交点
int GetLineCircleIntersection(Point A, Point B, Point C, double r, double& t1, double& t2) {
    // A --> B 直线  C圆心 r半径
    // {x = x0 + cos(a) * t      y = y0 + sin(a) * t}
    // (A.x + (B.x - A.x)t - C.x)^2 + (A.y + (B.y - A.y)t - C.y)^2 = r * r
    // a * a + c * c --> A     2 * a * b + 2 * c * d --> B   b * b + d * d - r * r --> C
    double a = B.x - A.x;
    double b = A.x - C.x;
    double c = B.y - A.y;
    double d = A.y - C.y;
    double e = a * a + c * c;
    double f = 2 * (a * b + c * d);
    double g = b * b + d * d - r * r;
    double delta = f * f - 4 * e * g;
    if (dcmp(delta) < 0)
        return 0;
    if (dcmp(delta) == 0) {
        t1 = t2 = -f / (2 * e);
        return 1;
    }
    t1 = (-f - sqrt(delta)) / (2 * e);
    t2 = (-f + sqrt(delta)) / (2 * e);
    return 2;
}

bool CircleIntersectionSegment(Point A, Point B, Point C, double r) {
    double t1, t2;//参数
    int cnt = GetLineCircleIntersection(A, B, C, r, t1, t2);
    if (cnt <= 1)
        return false;
    if (dcmp(t1) > 0 && dcmp(t1 - 1) < 0)
        return true;
    if (dcmp(t2) > 0 && dcmp(t2 - 1) < 0)
        return true;
    return false;
}
//切割多边形,返回有向直线A->B左边的多边形
Polygon CutPolygon(Polygon poly, Point A, Point B) {
    Polygon newpoly;
    int n = poly.size();
    for (int i = 0; i < n; i++) {
        Point C = poly[i];
        Point D = poly[(i + 1) % n];
        if (dcmp(Cross(B - A, C - A)) >= 0)
            newpoly.push_back(C);
        if (dcmp(Cross(B - A, C - D)) != 0) {
            Point ip = GetLineIntersection(A, B - A, C, D - C);
            if (OnSegment(ip, C, D))
                newpoly.push_back(ip);
        }
    }
    return newpoly;
}

vector<Polygon> pieces;
int n, m, l, w;

bool DiscIntersectPolygon(Polygon poly, Point p, double r) {
    if (isPointInPolygon(p, poly)) //判断是否圆心在多边形内
        return true;
    if (isPointInCircle(poly[0], p, r)) //判断整个多边形是否在圆内
        return true;
    int cnt = poly.size();
    for (int i = 0; i < cnt; i++) {
        if (CircleIntersectionSegment(poly[i], poly[(i + 1) % cnt], p, r)) //判断线段是否和圆有交点
            return true;
        if (isPointInCircle((poly[i] + poly[(i + 1) % cnt]) * 0.5, p, r)) //判断线段中点是否在圆内
            return true;
    }
    return false;
}

int main() {
    while (scanf("%d%d%d%d", &n, &m, &l, &w) == 4 && n + m + l + w) {
        pieces.clear();
        Polygon ploy;
        ploy.push_back(Point(0, 0));
        ploy.push_back(Point(l, 0));
        ploy.push_back(Point(l, w));
        ploy.push_back(Point(0, w));
        pieces.push_back(ploy);
        double x1, x2, y1, y2;
        for (int i = 0; i < n; i++) {
            scanf("%lf%lf%lf%lf", &x1, &y1, &x2, &y2);
            vector<Polygon> temp;
            for (int j = 0; j < pieces.size(); j++) {
                Polygon poly1 = CutPolygon(pieces[j], Point(x1, y1), Point(x2, y2)); //一条线分两个方向划分不同块
                Polygon poly2 = CutPolygon(pieces[j], Point(x2, y2), Point(x1, y1));
                if (poly1.size() >= 3)
                    temp.push_back(poly1);
                if (poly2.size() >= 3)
                    temp.push_back(poly2);
            }
            pieces = temp;
        }
        double x, y, r;
        for (int i = 0; i < m; i++) {
            scanf("%lf%lf%lf", &x, &y, &r);
            vector<double> res;
            for (int j = 0; j < pieces.size(); j++)
                if (DiscIntersectPolygon(pieces[j], Point(x, y), r))
                    res.push_back(fabs(PolygonArea(pieces[j])));
            int temp = res.size();
            printf("%d", temp);
            sort(res.begin(), res.end());
            for (int j = 0; j < temp; j++)
                printf(" %.2lf", res[j]);
            printf("\n");
        }
        printf("\n");
    }
    return 0;
}

版权声明:本文为博主原创文章,未经博主允许不得转载。

时间: 2024-12-08 01:57:10

uva 12296(切割凸多边形)的相关文章

hdu3982 直线切多边形

题意:有一块蛋糕,上面有一颗cherry.用刀子切n次,求切完之后有cherry的那部分的面积 My solution: 先做一个大矩形,使cake内切于这个大矩形.如图: 然后不断切这个大矩形,每次切割的时候保留与cherry同侧的那部分.最后剩下的就是一个多边形.求该多边形与圆的面积交即可. 在切割的时候如何保证留下来的是与cherry同侧的部分呢?很简单 方法不难,但是一直WA= =.遇到了个奇怪的问题: 对于这组数据: 3 5 2-5 0 5 3-5 0 5 -30 05 2-5 0 5

Rotating Scoreboard(半平面交模板题)

Rotating Scoreboard http://poj.org/problem?id=3335 Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 8506   Accepted: 3357 Description This year, ACM/ICPC World finals will be held in a hall in form of a simple polygon. The coaches and spe

poj2318

题意:把一个矩形划分成n部分,再给出一堆点,求每个部分内落入了多少点 sol attempt1:暴力 注意每个polygon中的点要按笔画的顺序排列好.还有就是有的点可能落在了upper or lower edge,稍微处理一下(ans==1 or 2都算) TLE了 -_-|| 1 #include<vector> 2 #include<list> 3 #include<map> 4 #include<set> 5 #include<deque>

poj3675 求多边形与圆的面积交

题意:给出多边形的顶点坐标.圆的圆心坐标和半径,求面积交 sol:又是模板题啦= = 注意poj的C++好像认不出hypot函数,要稍微改写一下. hypot(double x,double y):即返回sqrt(x*x+y*y)的值 1 #include<vector> 2 #include<list> 3 #include<map> 4 #include<set> 5 #include<deque> 6 #include<queue&g

poj1279 半平面交

题意:没看懂= = sol:在纸上随便画两下就可以看出,答案即按逆时针方向建立line,求它们的半平面交的面积. 模板题.注意输出答案时输出ans+eps,否则可能会出现结果为-0.00的情况. 1 #include<vector> 2 #include<list> 3 #include<map> 4 #include<set> 5 #include<deque> 6 #include<queue> 7 #include<sta

[转]计算几何模板

Repost 1. 1 #include<vector> 2 #include<list> 3 #include<map> 4 #include<set> 5 #include<deque> 6 #include<queue> 7 #include<stack> 8 #include<bitset> 9 #include<algorithm> 10 #include<functional>

poj3502 恶心题

巨恶心的一个题::>_<:: 题意:给出航班航线和大陆,找航线上距离大陆最远的某一点距离大陆边缘的距离 标准算法:二分答案,从大陆边界向外扩展,扩展出来的面积会覆盖航线.找出航线上最后被覆盖的点即可. poj讨论版上还有人用模拟退火做的orz 自己的YY算法:如图 找出那些航线与大陆边界的交界点,这些交界点把航线又分成了若干线段.从这些线段上找点即可. 这方法是好想可是不好写啊喂>_< 全写完估计800行啊喂>_< 不写了-_-|| 一开始还有脑洞地去求大陆的凸包,实际

uva 11595 - Crossing Streets EXTREME(切割多边形)

题目链接:uva 11595 - Crossing Streets EXTREME 对初始平面进行切割,得到所有平面,然后处理出所有边,有公共边的两个平面之间可以到达,对于城市的权值可以加到点上,进出各加一次即可. #include <cstdio> #include <cstring> #include <cmath> #include <queue> #include <vector> #include <complex> #in

OpenGL GL_EDGE_FLAG、GL_POLYGON_MODE、glPolygonMode组合使用将凹多边形切割成凸多边形绘制

1.虽然很多显卡已经底层支持凹多边形,但是仍然了解凸多边形组合成凹多边形 2.先保存原先的边角标志:开始绘制图多边形,因为是由两个凸多边形组合成一个凹多边形,所以第一个凸多边形的最后一条边留缺口,接着的凸多边形的开始边留缺口,这样子就能组合成凹多边形.原理:glEdgeFlag(GL_FALSE);标记从该顶点出发的边为非边界.这样子绘制的时候,从该顶点出发的线段不会绘制,只会绘制到达该顶点的边,简单点理解就是该顶点的显示边出度为0. glPushAttrib(GL_EDGE_FLAG); gl