Untitled
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 481 Accepted Submission(s): 245
Problem Description
There is an integer a and n integers b1,…,bn.
After selecting some numbers from b1,…,bn in
any order, say c1,…,cr,
we want to make sure that a mod c1 mod c2 mod… mod cr=0 (i.e., a will
become the remainder divided by ci each
time, and at the end, we want a to
become 0).
Please determine the minimum value of r.
If the goal cannot be achieved, print ?1 instead.
Input
The first line contains one integer T≤5,
which represents the number of testcases.
For each testcase, there are two lines:
1. The first line contains two integers n and a (1≤n≤20,1≤a≤106).
2. The second line contains n integers b1,…,bn (?1≤i≤n,1≤bi≤106).
Output
Print T answers
in T lines.
Sample Input
2 2 9 2 7 2 9 6 7
Sample Output
2 -1
Source
#include <iostream> #include <cstdio> #include <cstring> #include <algorithm> using namespace std; const int INF=0x3f3f3f3f; int n,a; int b[30]; int main() { int T_T; scanf("%d",&T_T); while(T_T--) { scanf("%d%d",&n,&a); for(int i=0;i<n;i++) { scanf("%d",b+i); } sort(b,b+n,greater<int>()); int ans=INF; for(int i=0;i<(1<<n);i++) { int ta=a; int cnt=0; for(int j=0;j<n;j++) { if((i>>j)&1) { cnt++; ta%=b[j]; } } if(ta==0) { ans=min(ans,cnt); } } if(ans==INF) ans=-1; printf("%d\n",ans); } return 0; }
版权声明:本文为博主原创文章,未经博主允许不得转载。