Machine Learning - week 4 - Non-linear Hypotheses

为什么计算机图像识别很难呢?因为我们看到的是汽车,而计算机看到的是表示颜色的 RGB 数值。计算机需要根据这些数值来判断。

如果图片是 50 * 50 像素,那么一共有 2500 个像素点。如果是 Quadratic features,那么是 xi, xj 的组合有 2500 + 2499 + ... + 1 约为 300 百万个。

Neurons and the Brain

大脑可以学习很多种算法,但是程序是固定的(出生到死亡都没有人修改你的大脑程序)。通过计算机模仿大脑的这种学习,这样,就不需要编写很多算法了,只需要编写少量的几种,然后让它们去学习就可以了。

Neural Networks

sj+1 = θ* sj

当前层 = θ * 前一层

这个计算 hθ(x) 的过程,也称为向前传播。我们从输入的激励层开始,然后向前传播给隐藏层并计算隐藏层的激励,然后继续向前传播直到计算出输出层的激励。

通过隐藏层计算,就能够得到更加复杂的训练数据,且复杂程度是加强的。

将 ,那么 ,也就可以用向量计算了。

Applications

通过神经网络实现 AND 函数

针对训练集实现的效果是一样的,并且能够进行预测。

实现非线性函数

将三个组合成一个

组合后各层的计算方式

多类别分类

同样使用 one-vs-all 的方式。

输出变为一个向量

时间: 2024-10-12 17:10:26

Machine Learning - week 4 - Non-linear Hypotheses的相关文章

machine learning(13) --Regularization:Regularized linear regression

machine learning(13) --Regularization:Regularized linear regression Gradient descent without regularization                    with regularization                     θ0与原来是的没有regularization的一样 θ1-n和原来相比会稍微变小(1-αλ⁄m)<1 Normal equation without regular

Note for video Machine Learning and Data Mining——Linear Model

Here is the note for lecture three. the linear model Linear model is a basic and important model in machine learning. 1. input representation The data we get usually needs some changes, most of them is the input data. In linear model, input =(x1,x2,x

Machine Learning - week 2 - Multivariate Linear Regression

Gradient Descent in Practice - Feature Scaling Make sure features are on a similar scale. Features 的范围越小,总的可能性就越小,计算速度就能加快. Dividing by the range 通过 feature/range 使每个 feature 大概在 [-1, 1] 的范围内 下题是一个例子: Mean normalization 将值变为接近 0.除了 x0,因为 x0 的值为 1. mu

Machine learning with python - Linear Regression

Machine learning with python Linear Regression 数据来自 cs229  Problem Set 1 (pdf) Data: q1x.dat, q1y.dat, q2x.dat, q2y.dat PS1 Solution (pdf) 从左上往右下 batchGradientDescent的cost随迭代次数的增加而下降,和收敛结果 stochasticGradientDescent的cost随迭代次数的增加而下降,和收敛结果 normalEquatio

Andrew Ng Machine Learning 专题【Linear Regression】

此文是斯坦福大学,机器学习界 superstar - Andrew Ng 所开设的 Coursera 课程:Machine Learning 的课程笔记. 力求简洁,仅代表本人观点,不足之处希望大家探讨. 课程网址:https://www.coursera.org/learn/machine-learning/home/welcome Week 3: Logistic Regression & Regularization 笔记:http://blog.csdn.net/ironyoung/ar

ON THE EVOLUTION OF MACHINE LEARNING: FROM LINEAR MODELS TO NEURAL NETWORKS

ON THE EVOLUTION OF MACHINE LEARNING: FROM LINEAR MODELS TO NEURAL NETWORKS We recently interviewed Reza Zadeh (@Reza_Zadeh). Reza is a Consulting Professor in the Institute for Computational and Mathematical Engineering at Stanford University and a

Machine Learning - II. Linear Regression with One Variable (Week 1)

http://blog.csdn.net/pipisorry/article/details/43115525 机器学习Machine Learning - Andrew NG courses学习笔记 单变量线性回归Linear regression with one variable 模型表示Model representation 例子: 这是Regression Problem(one of supervised learning)并且是Univariate linear regressi

Machine Learning:Linear Regression With Multiple Variables

Machine Learning:Linear Regression With Multiple Variables 接着上次预测房子售价的例子,引出多变量的线性回归. 在这里我们用向量的表示方法使表达式更加简洁. 变量梯度下降跟单变量一样需同步更新所有的theta值. 进行feature scaling的原因是为了使gradient descent算法收敛速度加快.如下图所示,左图theta2与theta1的量级相差太大,这样导致Cost Function的等高图为一个细高的椭圆形状,可以看到

Machine Learning:Linear Regression With One Variable

Machine Learning:Linear Regression With One Variable 机器学习可以应用于计算机视觉,自然语言处理,数据挖掘等领域,可以分为监督学习(Supervised Learning),无监督学习(Unsupervised Learning),强化学习(Reinforcement Learning)等. 首先我们从一个简单的监督学习入手:假如给我们一组训练集(在这里就是Size和Price),我们如何才能建立一个可以预测房价的模型呢? 这里(x,y)称为一

Linear Regression ----- Stanford Machine Learning(by Andrew NG)Course Notes

Andrew NG的Machine learning课程地址为:https://www.coursera.org/course/ml 在Linear Regression部分出现了一些新的名词,这些名词在后续课程中会频繁出现: Cost Function Linear Regression Gradient Descent Normal Equation Feature Scaling Mean normalization 损失函数 线性回归 梯度下降 正规方程 特征归一化 均值标准化 Mode