python多线程编程(2): 使用互斥锁同步线程

上一节的例子中,每个线程互相独立,相互之间没有任何关系。现在假设这样一个例子:有一个全局的计数num,每个线程获取这个全局的计数,根据num进行一些处理,然后将num加1。很容易写出这样的代码:

# encoding: UTF-8import threadingimport time

class MyThread(threading.Thread):    def run(self):        global num        time.sleep(1)        num = num+1        msg = self.name+‘ set num to ‘+str(num)        print msgnum = 0def test():    for i in range(5):        t = MyThread()        t.start()if __name__ == ‘__main__‘:    test()

但是运行结果是不正确的:

Thread-5 set num to 2
Thread-3 set num to 3
Thread-2 set num to 5
Thread-1 set num to 5
Thread-4 set num to 4

问题产生的原因就是没有控制多个线程对同一资源的访问,对数据造成破坏,使得线程运行的结果不可预期。这种现象称为“线程不安全”。

互斥锁同步

上面的例子引出了多线程编程的最常见问题:数据共享。当多个线程都修改某一个共享数据的时候,需要进行同步控制。

线程同步能够保证多个线程安全访问竞争资源,最简单的同步机制是引入互斥锁。互斥锁为资源引入一个状态:锁定/非锁定。某个线程要更改共享数据时,先将其锁定,此时资源的状态为“锁定”,其他线程不能更改;直到该线程释放资源,将资源的状态变成“非锁定”,其他的线程才能再次锁定该资源。互斥锁保证了每次只有一个线程进行写入操作,从而保证了多线程情况下数据的正确性。

threading模块中定义了Lock类,可以方便的处理锁定:

#创建锁mutex = threading.Lock()#锁定mutex.acquire([timeout])#释放mutex.release()

其中,锁定方法acquire可以有一个超时时间的可选参数timeout。如果设定了timeout,则在超时后通过返回值可以判断是否得到了锁,从而可以进行一些其他的处理。

使用互斥锁实现上面的例子的代码如下:

import threading
import time

class MyThread(threading.Thread):
    def run(self):
        global num
        time.sleep(1)

        if mutex.acquire(1):
            num += 1
            msg = self.name+‘ set num to ‘+str(num)
            print msg
            mutex.release()
num = 0
mutex = threading.Lock()
def test():
    for i in range(5):
        t = MyThread()
        t.start()
if __name__ == ‘__main__‘:
    test()

运行结果:

Thread-3 set num to 1
Thread-4 set num to 2
Thread-5 set num to 3
Thread-2 set num to 4
Thread-1 set num to 5

可以看到,加入互斥锁后,运行结果与预期相符。

同步阻塞

当一个线程调用锁的acquire()方法获得锁时,锁就进入“locked”状态。每次只有一个线程可以获得锁。如果此时另一个线程试图获得这个锁,该线程就会变为“blocked”状态,称为“同步阻塞”(参见多线程的基本概念)。

直到拥有锁的线程调用锁的release()方法释放锁之后,锁进入“unlocked”状态。线程调度程序从处于同步阻塞状态的线程中选择一个来获得锁,并使得该线程进入运行(running)状态。

互斥锁最基本的内容就是这些,下一节将讨论可重入锁(RLock)和死锁问题。

时间: 2024-12-24 16:06:52

python多线程编程(2): 使用互斥锁同步线程的相关文章

多线程编程-- part5.1 互斥锁之公平锁-获取锁

基本概念 1.AQS:AbstractQueuedSynchronizer类 AQS是java中管理“锁”的抽象类,锁的许多公共方法都是在这个类中实现.AQS是独占锁(例如,ReentrantLock)和共享锁(例如,Semaphore)的公共父类. (01) 独占锁 -- 锁在一个时间点只能被一个线程锁占有.根据锁的获取机制,它又划分为“公平锁”和“非公平锁”.公平锁,是按照通过CLH等待线程按照先来先得的规则,公平的获取锁:而非公平锁,则当线程要获取锁时,它会无视CLH等待队列而直接获取锁.

多线程编程-- part5.1 互斥锁ReentrantLock

ReentrantLock简介 Reentrantlock是一个可重入的互斥锁,又被称为独占锁. Reentrantlock:分为公平锁和非公平锁,它们的区别体现在获取锁的机制上是否公平.“锁”是为了保护竞争资源,防止多个线程同时操作线程而出错,ReentrantLock在同一个时间点只能被一个线程获取(当某线程获取到“锁”时,其它线程就必须等待):ReentraantLock是通过一个FIFO的等待队列来管理获取该锁所有线程的.在“公平锁”的机制下,线程依次排队获取锁:而“非公平锁”在锁是可获

多线程编程-- part5.1 互斥锁之公平锁-释放锁

释放公平锁 1.unlock() unlock()在ReentrantLock.java中实现的,源码如下: public void unlock() { sync.release(1); } 说明:unlock()是解锁函数,它是通过AQS的release()函数来实现的.在这里,“1”的含义和“获取锁的函数acquire(1)的含义”一样,它是设置“释放锁的状态”的参数.由于“公平锁”是可重入的,所以对于同一个线程,每释放锁一次,锁的状态-1. 2.release() release()在A

Python多线程编程

原文 运行几个线程和同时运行几个不同的程序类似,它有以下好处: 一个进程内的多个线程和主线程分享相同的数据空间,比分开不同的过程更容易分享信息或者彼此通信. 线程有时叫做轻量化过程,而且他们不要求更多的内存开支:它们比过程便宜. 一个线程的顺序是:启动,执行和停止.有一个指令指针跟踪线程正在运行的上下文在哪里. 它可以被抢占(中断) 它能暂时被挂起(也叫做休眠),而别的线程在运行--这也叫做yielding(让步). 开始一个新线程: 要生成一个线程,需要调用在thread模块中方法如下: th

Python并发编程05/ 死锁/递归锁/信号量/GIL锁/进程池/线程池

目录 Python并发编程05/ 死锁/递归锁/信号量/GIL锁/进程池/线程池 1.昨日回顾 2.死锁现象与递归锁 2.1死锁现象 2.2递归锁 3.信号量 4.GIL全局解释器锁 4.1背景 4.2为什么加锁 5.GIL与Lock锁的区别 6.验证计算密集型IO密集型的效率 6.1 IO密集型 6.2 计算密集型 7.多线程实现socket通信 7.1服务端 7.2客户端 8.进程池,线程池 Python并发编程05/ 死锁/递归锁/信号量/GIL锁/进程池/线程池 1.昨日回顾 #生产者消

python 多线程编程

一)线程基础 1.创建线程: thread模块提供了start_new_thread函数,用以创建线程.start_new_thread函数成功创建后还能够对其进行操作. 其函数原型: start_new_thread(function,atgs[,kwargs]) 其參数含义例如以下: function: 在线程中运行的函数名 args:元组形式的參数列表. kwargs: 可选參数,以字典的形式指定參数 方法一:通过使用thread模块中的函数创建新线程. >>> import th

day-3 聊聊python多线程编程那些事

python一开始给我的印象是容易入门,适合应用开发,编程简洁,第三方库多等等诸多优点,并吸引我去深入学习.直到学习完多线程编程,在自己环境上验证完这句话:python解释器引入GIL锁以后,多CPU场景下,也不再是并行方式运行,甚至比串行性能更差.不免有些落差,一开始就注定了这门语言迟早是有天花板的,对于一些并行要求高的系统,python可能不再成为首选,甚至是完全不考虑.但是事情也并不是绝对悲观的,我们已经看到有一大批人正在致力优化这个特性,新版本较老版本也有了一定改进,一些核心模块我们也可

python多线程编程—同步原语入门(锁Lock、信号量(Bounded)Semaphore)

摘录python核心编程 一般的,多线程代码中,总有一些特定的函数或者代码块不希望(或不应该)被多个线程同时执行(比如两个线程运行的顺序发生变化,就可能造成代码的执行轨迹或者行为不相同,或者产生不一致的数据),比如修改数据库.更新文件或其他会产生竞态条件的类似情况.此时就需要同步了. 同步:任意数量的线程可以访问临界区的代码,但在给定的时刻又只有一个线程可以通过时. 这里介绍两个基本的同步类型原语:锁/互斥.信号量 锁 锁有两种状态:锁定和未锁定.与之对应的是两个函数:获得锁和释放锁. 当多线程

python多线程编程(5): 队列同步

前面介绍了互斥锁和条件变量解决线程间的同步问题,并使用条件变量同步机制解决了生产者与消费者问题. 让我们考虑更复杂的一种场景:产品是各不相同的.这时只记录一个数量就不够了,还需要记录每个产品的细节.很容易想到需要用一个容器将这些产品记录下来. Python的Queue模块中提供了同步的.线程安全的队列类,包括FIFO(先入先出)队列Queue,LIFO(后入先出)队列LifoQueue,和优先级队列PriorityQueue.这些队列都实现了锁原语,能够在多线程中直接使用.可以使用队列来实现线程