闭锁是一种同步工具类,可以延迟线程的进度直到其到达终止状态。闭锁的作用相当于一扇门:在闭锁到达结束状态之前,这扇门一直是关闭的,并且没有任何线程能通过,当到达结束状态时,这扇门会打开并允许所有的线程通过。当闭锁到达结束状态后,将不会在改变状态,因此这扇门将永远保持打开状态。闭锁可以用来确定某些活动直到其他活动都完成后才继续执行,例如:
- 确保某个计算在其需要的所有资源都被初始化之后才继续执行。二元闭锁(包括两个状态)可以用来表示“资源R已经被初始化”,而所有需要R的操作都必须在这个闭锁上等待
- 确保某个服务在其依赖的所有其他服务都已经启动之后才启动。每个服务都有一个相关的二元闭锁。当启动服务S时,将首先在S 依赖的其他服务的闭锁上 等待,在所有依赖的服务都启动后会释放闭锁S,这样其他依赖S 的服务才能继续执行。
- 等待直到某个操作的所有参与者都就绪再继续执行。在这种情况下,当所有玩家都准备就绪时,闭锁将到达结束状态。
CountDownLatch是一种灵活的闭锁实现,可以在上述情况中使用,他可以使一个或多个线程等待一组时间发生。闭锁状态包括一个计数器,该计数器初始化为一个正数,表示需要等待的事件数量。countDown方法递减计数器,表示有一个事件发生了,而await方法等待计数器达到零,这表示所有需要等待的事件都已经发生。如果计数器的值非零,那么await会一直阻塞直到计数器为零,或者等待中的线程中断,或者等待超时。
await()方法递增计数器
Causes the current thread to wait until the latch has counted down to zero
/** * Causes the current thread to wait until the latch has counted down to * zero, unless the thread is {@linkplain Thread#interrupt interrupted}. * * <p>If the current count is zero then this method returns immediately. * * <p>If the current count is greater than zero then the current * thread becomes disabled for thread scheduling purposes and lies * dormant until one of two things happen: * <ul> * <li>The count reaches zero due to invocations of the * {@link #countDown} method; or * <li>Some other thread {@linkplain Thread#interrupt interrupts} * the current thread. * </ul> * * <p>If the current thread: * <ul> * <li>has its interrupted status set on entry to this method; or * <li>is {@linkplain Thread#interrupt interrupted} while waiting, * </ul> * then {@link InterruptedException} is thrown and the current thread‘s * interrupted status is cleared. * * @throws InterruptedException if the current thread is interrupted * while waiting */ public void await() throws InterruptedException { sync.acquireSharedInterruptibly(1); }
countDown()方法递减计数器
Decrements the count of the latch, releasing all waiting threads if the count reaches zero
/** * Decrements the count of the latch, releasing all waiting threads if * the count reaches zero. * * <p>If the current count is greater than zero then it is decremented. * If the new count is zero then all waiting threads are re-enabled for * thread scheduling purposes. * * <p>If the current count equals zero then nothing happens. */ public void countDown() { sync.releaseShared(1); }
Java并发编程实战示例
在下面这个示例中,它使用两个闭锁,分别表示起始门,和 结束门。
起始门 计数器的初始值为 1,而结束门计数器 的初始值为工作线程的数量。每个工作线程首先要做的就是在启动门上等待,从而确保所有的线程都就绪后才开始执行。而每个线程要做的最后一件事就是将调用结束门的countDown 方法减一,这能使主线程高效的等待直到所有的工作线程都执行完成,因此可以统计所消耗的时间:
package com.lyx; import java.util.concurrent.CountDownLatch; public class TestHarness { public static void main(String[] args) throws InterruptedException { // TODO Auto-generated method stub Runnable task = new Runnable() { public void run() { System.out.println("hello latch............"); } }; System.out.println(timeTashs(100, task)); } public static long timeTashs(int nThreads, final Runnable task) throws InterruptedException { final CountDownLatch startGate = new CountDownLatch(1); final CountDownLatch endGate = new CountDownLatch(nThreads); for (int i = 0; i < nThreads; i++) { Thread t = new Thread() { @Override public void run() { try { startGate.await(); try { task.run(); } finally { endGate.countDown(); } } catch (InterruptedException e) { // TODO: handle exception } } }; t.start(); } long start = System.nanoTime(); startGate.countDown(); endGate.await(); long end = System.nanoTime(); return end - start; } }
下面这个示例来自http://lbxc.iteye.com/blog/1717482
public long runSample(int n, final Runnable runSport) throws InterruptedException { final CountDownLatch gun = new CountDownLatch(1); final CountDownLatch end = new CountDownLatch(n); for (int i = 0; i < n; i++){ Thread t = new Thread() { public void run(){ try{ gun.await();//等待开枪 try{ runSport.run(); }finally{ end.countDown(); } }catch( InterruptedException e){ Thread.currentThread().interrupt(); } } }; t.start(); } long startTime = System.nanoTime(); gun.countDown();//开枪 end.await(); long endTime = System.nanoTime(); return endTime - startTime; }
====================END====================