green bar is the reward function, blue curve is the possibility of differenct trajectories if green bars are equally increased to yellow bars, the result will change! 原文地址:https://www.cnblogs.com/ecoflex/p/9085805.html
in most AC algorithms, we actually just fit value function. less common to fit Q function as well. batch:off line, monte carlo.online: bootstrap,TD 原文地址:https://www.cnblogs.com/ecoflex/p/9092566.html
--------------------------------------------------------------------------------------------------------------------------- --------------------------------------------------------------------------------------------------------------------------- un
make compromise between learnt policy and minimal cost! π hat is using states π theta is using observations 原文地址:https://www.cnblogs.com/ecoflex/p/9097988.html
一.深度强化学习的泡沫 2015年,DeepMind的Volodymyr Mnih等研究员在<自然>杂志上发表论文Human-level control through deep reinforcement learning[1],该论文提出了一个结合深度学习(DL)技术和强化学习(RL)思想的模型Deep Q-Network(DQN),在Atari游戏平台上展示出超越人类水平的表现.自此以后,结合DL与RL的深度强化学习(Deep Reinforcement Learning, DRL)迅速