什么是ground truth(GT)

转自ground truth的含义

ground truth在不同的地方有不同的含义,下面是参考维基百科的解释,ground truth in wikipedia.

1、在统计学和机器学习中

在机器学习中ground truth表示有监督学习的训练集的分类准确性,用于证明或者推翻某个假设。有监督的机器学习会对训练数据打标记,试想一下如果训练标记错误,那么将会对测试数据的预测产生影响,因此这里将那些正确打标记的数据成为ground truth。

小面是引用知乎lee philip的例子example on 知乎

1. 错误的数据

标注数据1 ( (84,62,86) , 1),其中x =(84,62,86), t = 1 。 (正确标记的数据叫做ground truth)

标注数据2 ( (84,162,86) , 1),其中x =(84,162,86), t = 1 。(这里训练数据标记错误)

这里标注数据1是ground truth, 而标注数据2不是。

预测数据1 y = -1

预测数据2 y = -1

2. 正确的数据

标注数据1 ( (84,62,86) , 1),其中x =(84,62,86), t = 1 。

标注数据2 ( (84,162,86) , 1),其中x =(84,162,86), t = -1 。 (改为ground truth)

这里标注数据1和2都是ground truth。

预测数据1 y = -1

预测数据2 y = -1

或者简单来说就是有效的正确的数据

原文地址:https://www.cnblogs.com/MY0213/p/9538235.html

时间: 2024-11-20 13:38:40

什么是ground truth(GT)的相关文章

【转载】Multitrack Audio with Structural Segmentation Ground Truth Annotations多轨音频分割

Multitrack Audio with Structural Segmentation Ground Truth Annotations Hargreaves, Steven URI: http://c4dm.eecs.qmul.ac.uk/rdr/handle/123456789/36 Date: 2013-11-27 Abstract: This dataset contains multitrack audio recordings of rock and pop songs, alo

论文笔记之:Playing for Data: Ground Truth from Computer Games

Playing for Data: Ground Truth from Computer Games ECCV 2016 Project Page:http://download.visinf.tu-darmstadt.de/data/from_games/index.html arXiv Paper : http://arxiv.org/pdf/1608.02192.pdf 摘要: 本文有意思哦,从游戏中的视频帧中得到新的训练数据,为什么用这些数据呢?众所周知,最近的计算机视觉很大程度上依赖于

根据ground truth在原图中分割子图

base_path = 'D:\image\people'; bb = importdata('output.txt'); output_img = cell(99); for i = 1:100%length(temp_img) nz = strcat('%0',num2str(4),'d'); temp_id = sprintf(nz,i); id = strcat(temp_id,'.jpg'); img_path = fullfile(base_path,id); temp_img =

论文阅读笔记:Fully Convolutional Networks for Semantic Segmentation

这是CVPR 2015拿到best paper候选的论文. 论文下载地址:Fully Convolutional Networks for Semantic Segmentation 尊重原创,转载请注明:http://blog.csdn.net/tangwei2014 1.概览&主要贡献 提出了一种end-to-end的做semantic segmentation的方法,简称FCN. 如下图所示,直接拿segmentation 的 ground truth作为监督信息,训练一个端到端的网络,让

Faster R-CNN论文详解

原文链接:http://lib.csdn.net/article/deeplearning/46182 paper链接:Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks &创新点 设计Region Proposal Networks[RPN],利用CNN卷积操作后的特征图生成region proposals,代替了Selective Search.EdgeBoxes等方法,速度上提升明显:

基于深度学习的目标检测研究进展

前言 开始本文内容之前,我们先来看一下上边左侧的这张图,从图中你看到了什么物体?他们在什么位置?这还不简单,图中有一个猫和一个人,具体的位置就是上图右侧图像两个边框(bounding-box)所在的位置.其实刚刚的这个过程就是目标检测,目标检测就是"给定一张图像或者视频帧,找出其中所有目标的位置,并给出每个目标的具体类别". 目标检测对于人来说是再简单不过的任务,但是对于计算机来说,它看到的是一些值为0~255的数组,因而很难直接得到图像中有人或者猫这种高层语义概念,也不清楚目标出现在

【论文翻译】SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation

Segnet: 一种用于图像分割的深度卷积编码-解码架构 摘要 我们展示了一种新奇的有实践意义的深度全卷积神经网络结构,用于逐个像素的语义分割,并命名为SegNet.核心的可训练的分割引擎包含一个编码网络,和一个对应的解码网络,并跟随着一个像素级别的分类层.编码器网络的架构在拓扑上与VGG16网络中的13个卷积层相同.解码网络的角色是映射低分辨率的编码后的特征图到输入分辨率的特征图.具体地,解码器使用在相应编码器的最大合并步骤中计算的池化索引来执行非线性上采样.这消除了上采样的学习需要.上采样后

caffe框架下目标检测——faster-rcnn实战篇操作

原有模型 1.下载fasrer-rcnn源代码并安装 git clone --recursive https://github.com/rbgirshick/py-faster-rcnn.git 1)  经常断的话,可以采取两步: git clone https://github.com/rbgirshick/py-faster-rcnn.git 2)  到py-faster-rcnn中,继续下载caffe-faster-rcnn,采取后台跑: git submodule update --in

An introduction to machine learning with scikit-learn

转自 http://scikit-learn.org/stable/tutorial/basic/tutorial.html#machine-learning-the-problem-setting In general, a learning problem considers a set of n samples of data and then tries to predict properties of unknown data. If each sample is more than