Netty优雅退出机制和原理

1.进程的优雅退出

1.1.Kill -9 PID带来的问题

在Linux上通常会通过kill -9 pid的方式强制将某个进程杀掉,这种方式简单高效,因此很多程序的停止脚本经常会选择使用kill -9 pid的方式。

无论是Linux的Kill -9 pid还是windows的taskkill /f /pid强制进程退出,都会带来一些副作用:对应用软件而言其效果等同于突然掉电,可能会导致如下一些问题:

  1. 缓存中的数据尚未持久化到磁盘中,导致数据丢失;
  2. 正在进行文件的write操作,没有更新完成,突然退出,导致文件损坏;
  3. 线程的消息队列中尚有接收到的请求消息还没来得及处理,导致请求消息丢失;
  4. 数据库操作已经完成,例如账户余额更新,准备返回应答消息给客户端时,消息尚在通信线程的发送队列中排队等待发送,进程强制退出导致应答消息没有返回给客户端,客户端发起超时重试,会带来重复更新问题;
  5. 其它问题等...

1.2.JAVA优雅退出

Java的优雅停机通常通过注册JDK的ShutdownHook来实现,当系统接收到退出指令后,首先标记系统处于退出状态,不再接收新的消息,然后将积压的消息处理完,最后调用资源回收接口将资源销毁,最后各线程退出执行。

2. 如何实现Netty的优雅退出

要实现Netty的优雅退出,首先需要了解通用Java进程的优雅退出如何实现。下面我们先讲解下优雅退出的实现原理,并结合实际代码进行讲解。最后看下如何实现Netty的优雅退出。

2.0.1. 信号简介

信号是在软件层次上对中断机制的一种模拟,在原理上,一个进程收到一个信号与处理器收到一个中断请求可以说是一样的,它是进程间一种异步通信的机制。以Linux的kill命令为例,kill -s SIGKILL pid (即kill -9 pid) 立即杀死指定pid的进程,SIGKILL就是发送给pid进程的信号。

信号具有平台相关性,Linux平台支持的一些终止进程信号如下所示:


信号名称


用途


SIGKILL


终止进程,强制杀死进程


SIGTERM


终止进程,软件终止信号


SIGTSTP


停止进程,终端来的停止信号


SIGPROF


终止进程,统计分布图用计时器到时


SIGUSR1


终止进程,用户定义信号1


SIGUSR2


终止进程,用户定义信号2


SIGINT


终止进程,中断进程


SIGQUIT


建立CORE文件终止进程,并且生成core文件

Windows平台存在一些差异,它的一些信号举例如下:SIGINT(Ctrl+C中断)、SIGILL、SIGTERM (kill发出的软件终止)、SIGBREAK (Ctrl+Break中断)。

信号选择:为了不干扰正常信号的运作,又能模拟Java异步通知,在Linux上我们需要先选定一种特殊的信号。通过查看信号列表上的描述,发现 SIGUSR1 和 SIGUSR2 是允许用户自定义的信号,我们可以选择SIGUSR2,为了测试方便,在Windows上我们可以选择SIGINT。

2.0.2. Java程序的优雅退出

首先看下通用的Java进程优雅退出的流程图:

第一步,应用进程启动的时候,初始化Signal实例,它的代码示例如下:

Signal sig = new Signal(getOSSignalType());

其中Signal构造函数的参数为String字符串,也就是2.1.1小节中介绍的信号量名称。

第二步,根据操作系统的名称来获取对应的信号名称,代码如下:

private String getOSSignalType()
   {
       return System.getProperties().getProperty("os.name").
		 toLowerCase().startsWith("win") ? "INT" : "USR2";
    }

判断是否是windows操作系统,如果是则选择SIGINT,接收Ctrl+C中断的指令;否则选择USR2信号,接收SIGUSR2(等价于kill -12 pid)指令。

第三步,将实例化之后的SignalHandler注册到JDK的Signal,一旦Java进程接收到kill -12 或者 Ctrl+C则回调handle接口,代码示例如下:

Signal.handle(sig, shutdownHandler);

其中shutdownHandler实现了SignalHandler接口的handle(Signal sgin)方法,代码示例如下:

第四步,在接收到信号回调的handle接口中,初始化JDK的ShutdownHook线程,并将其注册到Runtime中,示例代码如下:

private void invokeShutdownHook()
 {
	Thread t = new Thread(new ShutdownHook(), "ShutdownHook-Thread");
	Runtime.getRuntime().addShutdownHook(t);
 }

第五步,接收到进程退出信号后,在回调的handle接口中执行虚拟机的退出操作,示例代码如下:

Runtime.getRuntime().exit(0);

虚拟机退出时,底层会自动检测用户是否注册了ShutdownHook任务,如果有,则会自动将ShutdownHook线程拉起,执行它的Run方法,用户只需要在ShutdownHook中执行资源释放操作即可,示例代码如下:

class ShutdownHook implements Runnable
{
	@Override
	public void run() {
		System.out.println("ShutdownHook execute start...");
		System.out.print("Netty NioEventLoopGroup shutdownGracefully...");
		try {
			TimeUnit.SECONDS.sleep(10);//模拟应用进程退出前的处理操作
		} catch (InterruptedException e) {
				e.printStackTrace();
		}
		System.out.println("ShutdownHook execute end...");
	System.out.println("Sytem shutdown over, the cost time is 10000MS");
		}
}

下面我们在Windows环境中对通用的Java优雅退出程序进行测试,打开CMD控制台,拉起待测试程序,如下所示:

启动进程:

查看线程信息,发现注册的ShutdownHook线程没有启动,符合预期:

在控制台执行Ctrl+C,使进程退出,示例如下:

如上图所示,我们定义的ShutdownHook线程在JVM退出时被执行,作为测试程序,它休眠10S之后退出,控制台打印的相关信息如下:

下面我们总结下通用的Java程序优雅退出的技术要点:

2.0.3. Netty的优雅退出

在实际项目中,Netty作为高性能的异步NIO通信框架,往往用作基础通信框架负责各种协议的接入、解析和调度等,例如在RPC和分布式服务框架中,往往会使用Netty作为内部私有协议的基础通信框架。

当应用进程优雅退出时,作为通信框架的Netty也需要优雅退出,主要原因如下:

  1. 尽快的释放NIO线程、句柄等资源;
  2. 如果使用flush做批量消息发送,需要将积攒在发送队列中的待发送消息发送完成;
  3. 正在write或者read的消息,需要继续处理;
  4. 设置在NioEventLoop线程调度器中的定时任务,需要执行或者清理。

下面我们看下Netty优雅退出涉及的主要操作和资源对象:

Netty的优雅退出总结起来有三大步操作:

  1. 把NIO线程的状态位设置成ST_SHUTTING_DOWN状态,不再处理新的消息(不允许再对外发送消息);
  2. 退出前的预处理操作:把发送队列中尚未发送或者正在发送的消息发送完、把已经到期或者在退出超时之前到期的定时任务执行完成、把用户注册到NIO线程的退出Hook任务执行完成;
  3. 资源的释放操作:所有Channel的释放、多路复用器的去注册和关闭、所有队列和定时任务的清空取消,最后是NIO线程的退出。

下面我们具体看下如何实现Netty的优雅退出:

Netty优雅退出的接口和总入口在EventLoopGroup,调用它的shutdownGracefully方法即可,相关代码如下:

bossGroup.shutdownGracefully();
 workerGroup.shutdownGracefully();

除了无参的shutdownGracefully方法,还可以指定退出的超时时间和周期,相关接口定义如下:

EventLoopGroup的shutdownGracefully工作原理下个章节做详细讲解,结合Java通用的优雅退出机制,即可实现Netty的优雅退出,相关伪代码如下:

//统一定义JVM退出事件,并将JVM退出事件作为主题对进程内部发布
//所有需要优雅退出的消费者订阅JVM退出事件主题
//监听JVM退出的ShutdownHook被启动之后,发布JVM退出事件
//消费者监听到JVM退出事件,开始执行自身的优雅退出
//如果所有的非守护线程都成功完成优雅退出,进程主动退出
//如果到了退出的超时时间仍然没正常退出,则由停机脚本通过kill -9 pid强杀进程,强制退出

总结一下:JVM的ShutdownHook被触发之后,调用所有EventLoopGroup实例的shutdownGracefully方法进行优雅退出。由于Netty自身对优雅退出有较完善的支持,所以实现起来相对比较简单。

2.0.4. 一些误区

在实际工作中,由于对优雅退出和资源释放的原理不太清楚,或者对Netty的接口不太了解,很容易把优雅退出和资源释放混淆,导致出现各种问题。

如下案例:本意是想把某个Channel关闭,但是却调用了Channel关联的EventLoop的shutdownGracefully,导致把EventLoop线程和注册在该线程持有的多路复用器上所有的Channel都关闭了,错误代码如下所示:

ctx.channel().eventLoop().shutdownGracefully();

正确的做法如下所示:调用channel的close方法,关闭链路,释放与该Channel相关的资源:

ctx.channel().close();

除非是整个进程优雅退出,一般情况下不会调用EventLoopGroup和EventLoop的shutdownGracefully方法,更多的是链路channel的关闭和资源释放。

3. Netty优雅退出原理分析

Netty优雅退出涉及到线程组、线程、链路、定时任务等,底层实现细节非常复杂,下面我们就层层分解,通过源码来剖析它的实现原理。

3.1. NioEventLoopGroup

NioEventLoopGroup实际是NioEventLoop的线程组,它的优雅退出比较简单,直接遍历EventLoop数组,循环调用它们的shutdownGracefully方法,源码如下:

3.2. NioEventLoop

调用NioEventLoop的shutdownGracefully方法,首先就是要修改线程状态为正在关闭状态,它的实现在父类SingleThreadEventExecutor中,它们的继承关系如下:

SingleThreadEventExecutor的shutdownGracefully代码比较简单,就是修改线程的状态位,需要注意的是修改时需要对并发调用做判断,如果是由NioEventLoop自身调用,则不需要加锁,否则需要加锁,代码如下:

解释下为什么要加锁,因为shutdownGracefully是public的方法,任何能够获取到NioEventLoop的代码都可以调用它,在Netty中,业务代码通常不需要直接获取NioEventLoop并操作它,但是Netty对NioEventLoop做了比较厚的封装,它不仅仅只能读写消息,还能够执行定时任务,并作为线程池执行用户自定义Task。因此在Channel中将获取NioEventLoop的方法开放了出来,这就意味着用户只要能够获取到Channel,理论上就会存在并发执行shutdownGracefully的可能,因此在优雅退出的时候做了并发保护。

完成状态修改之后,剩下的操作主要在NioEventLoop中进行,代码如下:

我们继续看下closeAll的实现,它的原理是把注册在selector上的所有Channel都关闭,但是有些Channel正在发送消息,暂时还不能关,需要稍后再执行,核心代码如下:

循环调用Channel Unsafe的close方法,下面我们跳转到Unsafe中,对close方法进行分析。

3.3. AbstractUnsafe

AbstractUnsafe的close方法主要做了如下几件事:

1.判断当前该链路是否有消息正在发送,如果有则将关闭操作封装成Task放到eventLoop中稍后再执行:

2.将发送队列清空,不再允许发送新的消息:

3.调用SocketChannel的close方法,关闭链路:

4.调用pipeline的fireChannelInactive,触发链路关闭通知事件:

5.最后是调用deregister,从多路复用器上取消SelectionKey:

至此,优雅退出流程已经完成,这是否意味着NioEventLoop线程可以退出了,其实并非如此。

在此处,只是做了Channel的关闭和从Selector上的去注册,总结如下:

  1. 通过inFlush0来判断当前是否正在发送消息,如果是,则不执行Channel关闭动作,放入NIO线程的任务队列中稍后再执行close()操作;
  2. 因为已经不允许新的发送消息加入,一旦发送操作完成,就执行链路关闭、触发链路关闭事件和从Selector上取消注册操作。

之前已经说了,NioEventLoop除了I/O读写之外,还兼具定时任务执行、关闭ShutdownHook的执行等,如果此时有到期的定时任务,即使Chanel已经关闭,但是仍然需要继续执行,线程不能退出。下面我们具体分析下TaskQueue的处理流程。

3.4. TaskQueue

NioEventLoop执行完closeAll()操作之后,需要调用confirmShutdown看是否真的能够退出,它的处理逻辑如下:

1.执行TaskQueue中排队的Task,代码如下:

2.执行注册到NioEventLoop中的ShutdownHook,代码如下:

3.判断是否到达优雅退出的指定超时时间,如果达到或者过了超时时间,则立即退出,代码如下:

4.如果没到达指定的超时时间,暂时不退出,每隔100MS检测下是否有新的任务加入,有则继续执行:

在confirmShutdown方法中,夹杂了一些对已经废弃的shutdown()方法的处理,例如:

调用新的shutdownGracefully系列方法,该判断条件是永远都不会成立的,因此对于已经废弃的shutdown相关的处理逻辑,不再详细分析。

到此为止,confirmShutdown方法讲解完毕,confirmShutdown返回true,则NioEventLoop线程正式退出,Netty的优雅退出完成,代码如下:

3.5. 疑问解答

3.5.1. runAllTasks重复执行问题

在NioEventLoop的run方法中,已经调用了runAllTasks方法,为何紧随其后,在confirmShutdown中有继续调用runAllTasks方法呢,疑问代码如下:

原因主要有两个:

1.为了防止定时任务Task或者用户自定义的线程Task的执行过多占用NioEventLoop线程的调度资源,Netty对NioEventLoop线程I/O操作和非I/O操作时间做了比例限制,即限制非I/O操作的执行时间,如上图红框中代码所示。有了执行时间限制,因此可能会导致已经到期的定时任务、普通任务没有执行完,需要等待下次Selector轮询继续执行。在线程退出之前,需要对本该执行但是没有执行完成的Task进行扫尾处理,所以在confirmShutdown中再次调用了runAllTasks方法;

2.在调用runAllTasks方法之后,执行confirmShutdown之前,用户向NioEventLoop中添加了新的普通任务或者定时任务,因此需要在退出之前再次遍历并处理一遍Task Queue。

3.5.2. 优雅退出是否能够保证所有在通信线程排队的消息全部发送出去

实际是无法保证的,它只能保证如果现在正在发送消息过程中,调用了优雅退出方法,此时不会关闭链路,继续发送,如果发送操作完成,无论是否还有消息尚未发送出去,在下一轮Selector的轮询中,链路将会关闭,没有发送完成的消息将会被丢弃,甚至是半包消息。它的处理原理图如下:

它的原理比较复杂,现对主要逻辑处理进行解读:

  1. 调用优雅退出之后,是否关闭链路,判断标准是inFlush0是否为true,如果为False,则会执行链路关闭操作;
  2. 如果用户是类似批量发送,例如每达到N条或者定时触发flush操作,则在此期间调用优雅退出方法,inFlush0为False,链路关闭,积压的待发送消息会被丢弃掉;
  3. 如果优雅退出时链路正好在发送消息过程中,则它不会立即退出,等待发送完成之后,下次Selector轮询的时候才退出。在这种场景下,又有两种可能的场景:

场景A:如果一次把积压的消息全部发送完,没有发生写半包,则不会发生消息丢失;

场景B:如果一次没有把消息发送完成,此时Netty会监听写事件,触发Selector的下一次轮询并发送消息,代码如下:

Selector轮询时,首先处理读写事件,然后再处理定时任务和普通任务,因此在链路关闭之前,还有最后一次继续发送的机会,代码如下:

如果非常不幸,再次发送仍然没有把积压的消息全部发送完毕,再次发生了写半包,那无论是否有积压消息,执行AbstractUnsafe.close的Task还是会把链路给关闭掉,原因是只要完成一次消息发送操作,Netty就会把inFlush0置为false,代码如下:

链路关闭之后,所有尚未发送的消息都将被丢弃。

可能有些读者会有疑问,如果在第二次发送之后,执行AbstractUnsafe.close之前,业务正好又调用了flush操作,inFlush0是否会被修改成True呢?这个是不可能的,因为从Netty 4.X之后线程模型发生了变更,flush操作不是由用户线程执行,而是由Channel对应的NioEventLoop线程执行,所以在两者之间不会发生inFlush0被修改的情况。

Netty 4.X之后的线程模型如下所示:

另外,由于优雅退出有超时时间,如果在超时时间内没有完成积压消息的发送,也会发生消息丢弃的情况。

对于上述场景,需要应用层来保证相关的可靠性,或者对Netty的优雅退出机制进行优化。

原文地址:https://www.cnblogs.com/panchanggui/p/9293565.html

时间: 2024-08-10 13:30:10

Netty优雅退出机制和原理的相关文章

Netty源代码学习——EventLoopGroup原理:NioEventLoopGroup分析

类结构图: watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvd29ya2luZ19icmFpbg==/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast" > 不了解Executor接口原理的能够查看concurrent包中的api介绍.这里仅仅介绍Netty中EventExecutorGroup的主要功能. 从类的结构图中能够看到EventExecu

Netty自定义协议解析原理与应用

目前,大家都选择Netty做为游戏服务器框架网络通信的框架,而且目前也有很多优秀的产品是基于Netty开发的.它的稳定性,易用性和高效率性已得到广泛的认同.在游戏服务器开发中,选择netty一般就意味着我们要使用长连接来建立与客户端的通信,并且是自定义协议,在网络开发中,我们不得不处理断包,粘包的问题,因为Tcp/ip是基于数据流的传输,包与包之间没有明确的界限,而且于由网络路由的复杂性,大包有可能分成小包,小包也有可能被组装成大包进行传输.而Netty就考虑到了这一点,而且它用一个类就帮我们处

从dubbo处理视角看Netty处理网络传输原理 -- 粘包与拆包

如今,我们想要开发一个网络应用,那是相当地方便.不过就是引入一个框架,然后设置些参数,然后写写业务代码就搞定了. 写业务代码自然很重要,但是你知道: 你的数据是怎么来的吗?通过网络传输过来的呗. 你知道网络是通过什么方式传输过来的吗?光纤呗,TCP/IP协议呗. 看起来都难不住我们的同学们,但是,以上问题都不是我们关注的重点,我们今天要关注的是,TCP.IP协议是如何把数据传输到我们的应用服务器,而且准确地交到对应的业务代码手上的? 我们也不关注TCP协议的三次握手四次挥手,我们只需要确认一点,

新手入门:目前为止最透彻的的Netty高性能原理和框架架构解析(阿里)

1.引言 Netty 是一个广受欢迎的异步事件驱动的Java开源网络应用程序框架,用于快速开发可维护的高性能协议服务器和客户端. 本文基于 Netty 4.1 展开介绍相关理论模型,使用场景,基本组件.整体架构,知其然且知其所以然,希望给大家在实际开发实践.学习开源项目方面提供参考. 本文作者的另两篇<高性能网络编程(五):一文读懂高性能网络编程中的I/O模型>.<高性能网络编程(六):一文读懂高性能网络编程中的线程模型>也写的很好,有兴趣的读者可以一并看看. 关于作者: 陈彩华(

一文读懂高性能网络编程中的I/O模型

1.前言 随着互联网的发展,面对海量用户高并发业务,传统的阻塞式的服务端架构模式已经无能为力.本文(和下篇<高性能网络编程(六):一文读懂高性能网络编程中的线程模型>)旨在为大家提供有用的高性能网络编程的I/O模型概览以及网络服务进程模型的比较,以揭开设计和实现高性能网络架构的神秘面纱. 限于篇幅原因,请将本文与<高性能网络编程(六):一文读懂高性能网络编程中的线程模型>连起来读,这样会让知识更连贯. 学习交流: - 即时通讯开发交流3群:185926912[推荐] - 移动端IM

网络编程懒人入门(九):通俗讲解,有了IP地址,为何还要用MAC地址?

1.前言 标题虽然是为了解释有了 IP 地址,为什么还要用 MAC 地址,但是本文的重点在于理解为什么要有 IP 这样的东西.本文对读者的定位是知道 MAC 地址是什么,IP 地址是什么. (本文同步发布于:http://www.52im.net/thread-2067-1-1.html) 2.关于作者 翟志军,个人博客地址:https://showme.codes/,Github:https://github.com/zacker330.感谢作者的原创分享. 作者的另一篇<即时通讯安全篇(七)

少啰嗦!一分钟带你读懂Java的NIO和经典IO的区别

1.引言 很多初涉网络编程的程序员,在研究Java NIO(即异步IO)和经典IO(也就是常说的阻塞式IO)的API时,很快就会发现一个问题:我什么时候应该使用经典IO,什么时候应该使用NIO? 在本文中,将尝试用简明扼要的文字,阐明Java NIO和经典IO之间的差异.典型用例,以及这些差异如何影响我们的网络编程或数据传输代码的设计和实现的. 本文没有复杂理论,也没有像网上基它文章一样千篇一律的复制粘贴,有的只是接地气的通俗易懂,希望能给你带来帮助. (本文同步发布于:http://www.5

Netty(RPC高性能之道)原理剖析

1,Netty简述 Netty 是一个基于 JAVA NIO 类库的异步通信框架,用于创建异步非阻塞.基于事件驱动.高性能.高可靠性和高可定制性的网络客户端和服务器端 RPC高性能分析,请参考文章"[总结]RPC性能之道 " 特点 异步.非阻塞.基于事件驱动的NIO框架 支持多种传输层通信协议,包括TCP.UDP等 开发异步HTTP服务端和客户端应用程序 提供对多种应用层协议的支持,包括TCP私有协议.HTTP协议.WebSocket协议.文件传输等 默认提供多种编解码能力,包括Jav

Netty系列之Netty可靠性分析

作者 李林锋 发布于 2014年6月19日 | 29 讨论 分享到:微博微信FacebookTwitter有道云笔记邮件分享 稍后阅读 我的阅读清单 1. 背景 1.1. 宕机的代价 1.1.1. 电信行业 毕马威国际(KPMG International)在对46个国家的74家运营商进行调查后发现,全球通信行业每年的收益流失约为400亿美元,占总收入的1%-3%.导致收益流失的因素有多种,主要原因就是计费BUG. 1.1.2. 互联网行业 美国太平洋时间8月16日下午3点50分到3点55分(北