CodeForces621E 快速矩阵幂优化dp

有时些候在用快速矩阵幂优化dp的时候,它的矩阵乘法是不那么容易被具体为题目背景的意思的,大多数时候难以理解矩阵之间相乘的实际意义,正如有时候我们不知道现在在做手头这些事情的意义,但倘若是因一个目标而去做的,正如快速矩阵幂最终会计算出答案一样,我们也最终会在这些不明意义的事情中实现目标。

题意:有 bb 个格子,每个格子有 nn 个数字,各个格子里面的数字都是相同的. 求从 bb 个格子中各取一个数字, 构成一个 bb 位数, 使得这个 bb 位数模 xx 为 kk 的方案数(同一格子内相同的数字算不同方案)

由于每个格子的数都是0-9的,我们首先可以想到用num存所有数字的数量。

一个简单的思想是dp每一位数字的余数,dp[i][j]表示遍历到i的时候有余数j的可能性数量。

写出状态转移方程 dp[i][j * 10 + k] += dp[i - 1][j] * num[k]

但是i的数量大到1e9,显然是不可能的,事实上我们可以考虑用快速矩阵幂来优化,

用一个大小为x * x的矩阵来表示从一个余数到另一个余数的可能情况直接上快速矩阵幂即可。

#include <map>
#include <set>
#include <ctime>
#include <cmath>
#include <queue>
#include <stack>
#include <vector>
#include <string>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <sstream>
#include <iostream>
#include <algorithm>
#include <functional>
using namespace std;
#define For(i, x, y) for(int i=x;i<=y;i++)
#define _For(i, x, y) for(int i=x;i>=y;i--)
#define Mem(f, x) memset(f,x,sizeof(f))
#define Sca(x) scanf("%d", &x)
#define Sca2(x,y) scanf("%d%d",&x,&y)
#define Scl(x) scanf("%lld",&x);
#define Pri(x) printf("%d\n", x)
#define Prl(x) printf("%lld\n",x);
#define CLR(u) for(int i=0;i<=N;i++)u[i].clear();
#define LL long long
#define ULL unsigned long long
#define mp make_pair
#define PII pair<int,int>
#define PIL pair<int,long long>
#define PLL pair<long long,long long>
#define pb push_back
#define fi first
#define se second
typedef vector<int> VI;
const double eps = 1e-9;
const int maxn = 110;
const int maxm = 5e4 + 10;
const int INF = 0x3f3f3f3f;
const int mod = 1e9 + 7;
int N,B,K,X;
int a[maxm];
int num[14];
struct Mat{
    LL a[maxn][maxn];
    void init(){
        Mem(a,0);
    }
};
Mat operator *(Mat a,Mat b){
    Mat ans; ans.init();
    for(int i = 0 ; i < X; i ++){
        for(int j = 0 ; j < X; j ++){
            for(int k = 0 ; k < X; k ++){
                ans.a[i][j] = (ans.a[i][j] + a.a[i][k] * b.a[k][j]) % mod;
            }
        }
    }
    return ans;
}
int main()
{
    scanf("%d%d%d%d",&N,&B,&K,&X);
    For(i, 1, N){
        scanf("%d", &a[i]);
        a[i] %= X;
        num[a[i]]++;
    }
    Mat base,ans; base.init(); ans.init();
    ans.a[0][0] = 1;
    for(int i = 0 ; i < X; i ++){
        for(int j = 0 ; j < 10 ; j ++){
            int to = (i * 10 + j) % X;
            base.a[i][to] += num[j];
        }
    }
    while(B){
        if(B & 1) ans = ans * base;
        base = base * base;
        B >>= 1;
    }
    Prl(ans.a[0][K]);
    #ifdef VSCode
    system("pause");
    #endif
    return 0;
}

原文地址:https://www.cnblogs.com/Hugh-Locke/p/9631622.html

时间: 2024-10-10 07:21:34

CodeForces621E 快速矩阵幂优化dp的相关文章

快速矩阵幂+DFS构造矩阵+大数 ACdream1214 Nice Patterns Strike Back

传送门:点击打开链接 题意:告诉你矩阵大小是n*m,要求矩阵中不能有2*2的白色子矩阵或者黑色子矩阵,最后种类数模P 思路:如果不是大数,这道题还是非常有意思的..对于专门卡C++的题目也是醉了...因为n太大了,而m最大也只有5,很明显是大数上的快速矩阵幂. 问题是如何构造出矩阵出来,之前做过骨牌的题目,就是利用DFS来构造的,感觉这道题在思路上是一样的,同样也是利用DFS先构造出矩阵 然后直接大数+快速矩阵幂撸一发就行了 #include<map> #include<set>

形态形成场(矩阵乘法优化dp)

形态形成场(矩阵乘法优化dp) 短信中将会涉及前\(k\)种大写字母,每个大写字母都有一个对应的替换式\(Si\),替换式中只会出现大写字母和数字,比如\(A→BB,B→CC0,C→123\),代表 \(A=12312301231230,B=1231230,C=123\).现在对于给定的替换式,求字符 AA 所代表的串有多少子串满足: 这个子串为单个字符\(0\)或没有前导\(0\). 把这个子串看作一个十进制数后模\(n\)等于\(0\). 答案对\(r\)取模.对于100%的数据,$2 \l

矩阵快速幂 优化dp 模板

相关博客 :https://blog.csdn.net/china_xyc/article/details/89819376#commentBox 关于能用矩阵乘法优化的DP题目,有如下几个要求: 转移式只有加法,清零,减法etc.,max和min运算不允许 转移式中关于前几位dp结果得到的系数必须是常量 转移次数一般超级多 由于转移次数多,一般都要模一个int范围内的数 综上,举一个例子: dp[i]=a×dp[i−1]+b×dp[i−2]+c×dp[i−3] 其中,a,b,c是常量,而在需要

LibreOJ #2325. 「清华集训 2017」小Y和恐怖的奴隶主(矩阵快速幂优化DP)

哇这题剧毒,卡了好久常数才过T_T 设$f(i,s)$为到第$i$轮攻击,怪物状态为$s$时对boss的期望伤害,$sum$为状态$s$所表示的怪物个数,得到朴素的DP方程$f(i,s)=\sum \frac{1}{sum+1}*(f(i+1,s')+[s==s'])$ 状态数只有$C_{8+3}^3=165$个,所以就可以矩乘优化啦.再加上一个用于转移的$1$,矩阵大小是$166*166$的,因为多组询问,所以可以先把$2$的所有次幂的矩阵都预处理出来. 然后会发现复杂度是$O(T*166^3

[BZOJ 1009] [HNOI2008] GT考试 【AC自动机 + 矩阵乘法优化DP】

题目链接:BZOJ - 1009 题目分析 题目要求求出不包含给定字符串的长度为 n 的字符串的数量. 既然这样,应该就是 KMP + DP ,用 f[i][j] 表示长度为 i ,匹配到模式串第 j 位的字符串个数,然后转移就是可以从第 j 位加上一个字符转移到另一个位置. 然而..我并没有写过KMP + DP,我觉得还是写AC自动机+DP比较简单..于是,尽管只有一个模式串,我还是写了AC自动机+DP. 然后就是建出AC自动机,f[i][j] 表示长度为 i ,走到节点 j 的字符串的个数.

HDU----(4291)A Short problem(快速矩阵幂)

A Short problem Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 1716    Accepted Submission(s): 631 Problem Description According to a research, VIM users tend to have shorter fingers, compared

排队 矩阵快速幂优化dp

\(T1\) 排队 ? Description ?? 抢饭是高中生活的一部分,现在有一列队伍长度为 \(n\),(注意:由于人与人之间要保持距离,且不同情况所保持的距离大小不同,所以长度并不能直接体现队列的人数).已知男男之间的距离为 \(a\),男女之间距离为 bb,女女之间距离为 \(c\).一个男生打饭时间为 \(d\),一个女生打饭时间为 \(e\),求所有情况的排队时间总和(忽略身体的大小对队伍长度的贡献),答案对 $10^{9}+7 $取模. ?? Input Format 一行六个

bzoj 4000 矩阵快速幂优化DP

建立矩阵,跑快速幂 1 /************************************************************** 2 Problem: 4000 3 User: idy002 4 Language: C++ 5 Result: Accepted 6 Time:32 ms 7 Memory:836 kb 8 ****************************************************************/ 9 10 #inclu

czy的后宫——矩阵快速幂优化DP

题意 有 n 个位置排成一行,可以放 m 种妹子.每个位置可以放也可以不放,规定某些妹子不能相邻,求方案数. 分析 #include<bits/stdc++.h> using namespace std; typedef long long ll; ll qmul(ll x,ll y,ll p){ //快速乘 x%=p; y%=p; ll ans=0; while(y){ if(y&1){ ans+=x; if(ans>=p) ans-=p; //这样写不能有负数 } x<