Adaboost和GBDT的区别以及xgboost和GBDT的区别
以下内容转自 https://blog.csdn.net/chengfulukou/article/details/76906710 ,本文主要用作记录收藏
AdaBoost VS GBDT
和AdaBoost一样,Gradient Boosting每次基于先前模型的表现选择一个表现一般的新模型并且进行调整。不同的是,AdaBoost是通过提升错分数据点的权重来定位模型的不足,而Gradient Boosting是通过算梯度(gradient)来定位模型的不足。因此相比AdaBoost, Gradient Boosting可以使用更多种类的目标函数,而当目标函数是均方误差时,计算损失函数的负梯度值在当前模型的值即为残差。
GBDT VS LR
从决策边界来说,线性回归的决策边界是一条直线,逻辑回归的决策边界是一条曲线,而GBDT的决策边界可能是很多条线。GBDT并不一定总是好于线性回归或逻辑回归。根据没有免费的午餐原则,没有一个算法是在所有问题上都能好于另一个算法的。根据奥卡姆剃刀原则,如果GBDT和线性回归或逻辑回归在某个问题上表现接近,那么我们应该选择相对比较简单的线性回归或逻辑回归。具体选择哪一个算法还是要根据实际问题来决定。
机器学习算法中GBDT和XGBOOST的区别有哪些?
- 基分类器的选择:传统GBDT以CART作为基分类器,XGBoost还支持线性分类器,这个时候XGBoost相当于带L1和L2正则化项的逻辑斯蒂回归(分类问题)或者线性回归(回归问题)。
- 二阶泰勒展开:传统GBDT在优化时只用到一阶导数信息,XGBoost则对代价函数进行了二阶泰勒展开,同时用到了一阶和二阶导数。顺便提一下,XGBoost工具支持自定义损失函数,只要函数可一阶和二阶求导。
- 方差-方差权衡:XGBoost在目标函数里加入了正则项,用于控制模型的复杂度。正则项里包含了树的叶子节点个数、每个叶子节点上输出分数的L2模的平方和。从Bias-variance tradeoff角度来讲,正则项降低了模型的variance,使学习出来的模型更加简单,防止过拟合,这也是XGBoost优于传统GBDT的一个特性。
- Shrinkage(缩减):相当于学习速率(xgboost中的)。XGBoost在进行完一次迭代后,会将叶子节点的权重乘上该系数,主要是为了削弱每棵树的影响,让后面有更大的学习空间。实际应用中,一般把eta设置得小一点,然后迭代次数设置得大一点。(补充:传统GBDT的实现也有学习速率)
- 列抽样(column subsampling):XGBoost借鉴了随机森林的做法,支持列抽样,不仅能降低过拟合,还能减少计算,这也是XGBoost异于传统GBDT的一个特性。
- 缺失值处理:XGBoost考虑了训练数据为稀疏值的情况,可以为缺失值或者指定的值指定分支的默认方向,这能大大提升算法的效率,paper提到50倍。即对于特征的值有缺失的样本,XGBoost可以自动学习出它的分裂方向。
- XGBoost工具支持并行:Boosting不是一种串行的结构吗?怎么并行的?注意XGBoost的并行不是tree粒度的并行,XGBoost也是一次迭代完才能进行下一次迭代的(第次迭代的损失函数里包含了前面次迭代的预测值)。XGBoost的并行是在特征粒度上的。我们知道,决策树的学习最耗时的一个步骤就是对特征的值进行排序(因为要确定最佳分割点),XGBoost在训练之前,预先对数据进行了排序,然后保存为block(块)结构,后面的迭代中重复地使用这个结构,大大减小计算量。这个block结构也使得并行成为了可能,在进行节点的分裂时,需要计算每个特征的增益,最终选增益最大的那个特征去做分裂,那么各个特征的增益计算就可以开多线程进行。
- 线程缓冲区存储:按照特征列方式存储能优化寻找最佳的分割点,但是当以行计算梯度数据时会导致内存的不连续访问,严重时会导致cache miss,降低算法效率。paper中提到,可先将数据收集到线程内部的buffer(缓冲区),主要是结合多线程、数据压缩、分片的方法,然后再计算,提高算法的效率。
- 可并行的近似直方图算法:树节点在进行分裂时,我们需要计算每个特征的每个分割点对应的增益,即用贪心法枚举所有可能的分割点。当数据无法一次载入内存或者在分布式情况下,贪心算法效率就会变得很低,所以xgboost还提出了一种可并行的近似直方图算法,用于高效地生成候选的分割点。大致的思想是根据百分位法列举几个可能成为分割点的候选者,然后从候选者中根据上面求分割点的公式计算找出最佳的分割点。
原文地址:https://www.cnblogs.com/crackpotisback/p/10066780.html
时间: 2024-10-25 15:06:15