LeetCode 302. Smallest Rectangle Enclosing Black Pixels

DFS

最一开始想到的就是dfs,从题目给的点开始dfs搜索。

时间复杂度为O(mn)

class Solution {
public:
    int i_min=INT_MAX, i_max=INT_MIN;
    int j_min=INT_MAX, j_max=INT_MIN;

    vector<vector<int>> dirs={{1,0},{-1,0},{0,1},{0,-1}};

    int minArea(vector<vector<char>>& image, int x, int y) {
        dfs(image,x,y);
        return (i_max-i_min+1)*(j_max-j_min+1);
    }

    void dfs(vector<vector<char>>& image, int i, int j){
        if (i<0 || i>=image.size() || j<0 || j>=image[0].size() || image[i][j]==‘0‘) return;
        i_min=min(i_min,i); i_max=max(i_max,i);
        j_min=min(j_min,j); j_max=max(j_max,j);
        image[i][j] = ‘0‘;

        for (auto dir:dirs){
            dfs(image,i+dir[0],j+dir[1]);
        }
    }

};

Binary Search

这道题给了一个坐标(x,y),其实是有用意的。如果只是单纯的搜索,我们完全可以搜索整个图。

这道题其实可以用二分来做。由于给定的点是黑的,我们可以从水平和竖直两个方向,分别找到由黑变白的点,和由白变黑的分界点。

其实类似投影的操作,把二维投影为一维的数组,然后从这个一维数组中寻找边界。而这个投影的过程可以在二分的时候一起完成。

最大的问题是二分。举个例子,比如 000111 找边界,我们可以用和 lower_bound 一样的思路去做。搜索区间 [low,high),解区间 [low,high],

同时,如果当前是投影到水平方向,我们要搜索 image[mid][i] 来判断这个元素的值;如果是投影到竖直方向,同理。这样的好处是把投影的过程和二分一起做,否则投影只能先处理好,而生成投影数组时间复杂度为 O(mn)。而这样和二分一起处理的话,水平和竖直方向时间复杂度分别为 O(mlogn) 和 O(nlogm)。

class Solution {
public:
    int minArea(vector<vector<char>>& image, int x, int y) {
        int m=image.size(), n=image[0].size();
        int left=HorizontalSearch(image,0,y,0,m,true);
        int right=HorizontalSearch(image,y+1,n,0,m,false);
        int top=VerticalSearch(image,0,x,0,n,true);
        int bottom=VerticalSearch(image,x+1,m,0,n,false);
        return (right-left)*(bottom-top);
    }

    // [low,high)
    // if whiteToBlack, find the first black, otherwise find the first white
    int HorizontalSearch(vector<vector<char>> &image, int low, int high, int top, int bottom, bool whiteToBlack){
        while (low<high){
            int mid=(low+high)/2, k=top;
            bool isWhite=true;
            while (k<bottom)
                if (image[k][mid]==‘1‘) {isWhite=false; break;}
                else ++k;
            if (isWhite==whiteToBlack) low=mid+1;
            else high=mid;
        }
        return low;
    }

    int VerticalSearch(vector<vector<char>> &image, int low, int high, int left, int right, bool whiteToBlack){
        while (low<high){
            int mid=(low+high)/2, k=left;
            bool isWhite=true;
            while (k<right)
                if (image[mid][k]==‘1‘) {isWhite=false; break;}
                else ++k;
            if (isWhite==whiteToBlack) low=mid+1;
            else high=mid;
        }
        return low;
    }
};

/*
Equivalent:
    if (isWhite==whiteToBlack)
        low = mid+1;
    else
        high = mid;

    if (whiteToBlack){
        if (isWhite) low=mid+1;
        else high=mid;
    }else{
        if (isWhite) high=mid;
        else low=mid+1;
    }
*/

其实水平和竖直也可以写在一起,只要添加一个变量判断即可,但是为了思路更清晰,我分开来写。

本题要特别注意二分的写法,用开区间来做。

时间复杂度 O(mlogn+nlogm)

空间复杂度 O(1)

References:

https://leetcode.com/problems/smallest-rectangle-enclosing-black-pixels/solution/

原文地址:https://www.cnblogs.com/hankunyan/p/9944708.html

时间: 2024-10-13 21:47:50

LeetCode 302. Smallest Rectangle Enclosing Black Pixels的相关文章

302. Smallest Rectangle Enclosing Black Pixels

题目: An image is represented by a binary matrix with 0 as a white pixel and 1 as a black pixel. The black pixels are connected, i.e., there is only one black region. Pixels are connected horizontally and vertically. Given the location (x, y) of one of

302. Smallest Rectangle Enclosing Black Pixels My Submissions QuestionEditorial Solution

An image is represented by a binary matrix with 0 as a white pixel and 1 as a black pixel. The black pixels are connected, i.e., there is only one black region. Pixels are connected horizontally and vertically. Given the location (x, y) of one of the

LC 302. Smallest Rectangle Enclosing Black Pixels【lock, hard】

An image is represented by a binary matrix with 0 as a white pixel and 1 as a black pixel. The black pixels are connected, i.e., there is only one black region. Pixels are connected horizontally and vertically. Given the location (x, y) of one of the

Leetcode: Smallest Rectangle Enclosing Black Pixels

An image is represented by a binary matrix with 0 as a white pixel and 1 as a black pixel. The black pixels are connected, i.e., there is only one black region. Pixels are connected horizontally and vertically. Given the location (x, y) of one of the

Smallest Rectangle Enclosing Black Pixels

Note: 约等于O(nlogn) public class Solution { /** * @param image a binary matrix with '0' and '1' * @param x, y the location of one of the black pixels * @return an integer */ public int minArea(char[][] image, int x, int y) { // Write your code here if(

[LeetCode OJ] Largest Rectangle in Histogram

Given n non-negative integers representing the histogram's bar height where the width of each bar is 1, find the area of largest rectangle in the histogram. Above is a histogram where width of each bar is 1, given height = [2,1,5,6,2,3]. The largest

[leetcode]85. Maximal Rectangle 最大矩形

Given a 2D binary matrix filled with 0's and 1's, find the largest rectangle containing only 1's and return its area. Example: Input: [ ["1","0","1","0","0"], ["1","0","1",&qu

[LeetCode] 632. Smallest Range Covering Elements from K Lists

[LeetCode]632. Smallest Range Covering Elements from K Lists 你有 k 个升序排列的整数数组.找到一个最小区间,使得 k 个列表中的每个列表至少有一个数包含在其中. 我们定义如果 b-a < d-c 或者在 b-a == d-c 时 a < c,则区间 [a,b] 比 [c,d] 小. 示例 1: 输入:[[4,10,15,24,26], [0,9,12,20], [5,18,22,30]] 输出: [20,24] 解释: 列表 1:

[LeetCode] K-th Smallest in Lexicographical Order 字典顺序的第K小数字

Given integers n and k, find the lexicographically k-th smallest integer in the range from 1 to n. Note: 1 ≤ k ≤ n ≤ 109. Example: Input: n: 13 k: 2 Output: 10 Explanation: The lexicographical order is [1, 10, 11, 12, 13, 2, 3, 4, 5, 6, 7, 8, 9], so