maximum sum of a subarray with at-least k elements.

// Returns maximum sum of a subarray with at-least
    // k elements.
    static int maxSumWithK(int a[], int n, int k)
    {
        // maxSum[i] is going to store maximum sum
        // till index i such that a[i] is part of the
        // sum.
        int maxSum[] = new int [n];
        maxSum[0] = a[0]; 

        // We use Kadane‘s algorithm to fill maxSum[]
        // Below code is taken from method 3 of
        // https://www.geeksforgeeks.org/largest-sum-contiguous-subarray/
        int curr_max = a[0];
        for (int i = 1; i < n; i++)
        {
            curr_max = Math.max(a[i], curr_max+a[i]);
            maxSum[i] = curr_max;
        } 

        // Sum of first k elements
        int sum = 0;
        for (int i = 0; i < k; i++)
            sum += a[i]; 

        // Use the concept of sliding window
        int result = sum;
        for (int i = k; i < n; i++)
        {
            // Compute sum of k elements ending
            // with a[i].
            sum = sum + a[i] - a[i-k]; 

            // Update result if required
            result = Math.max(result, sum); 

            // Include maximum sum till [i-k] also
            // if it increases overall max.
            result = Math.max(result, sum + maxSum[i-k]);
        }
        return result;
    }

  

原文地址:https://www.cnblogs.com/apanda009/p/9678608.html

时间: 2024-10-11 02:14:47

maximum sum of a subarray with at-least k elements.的相关文章

Leetcode Week5 Maximum Sum Circular Subarray

Question Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C. Here, a circular array means the end of the array connects to the beginning of the array.  (Formally, C[i] = A[i] when 0 <= i

LC 918. Maximum Sum Circular Subarray

Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C. Here, a circular array means the end of the array connects to the beginning of the array.  (Formally, C[i] = A[i] when 0 <= i < A.leng

算法设计与分析[0009] Dynamic Programming(II)(Maximum Sum/Product Subarray)

原文引用https://www.dazhuanlan.com/2019/08/25/5d625b5c4d1ea/ 本文通过 53. Maximum Subarray & 152. Maximum Product Subarray 分析根据动态规划思路进行问题求解中的一个关键环节:子问题的拆分和求解. Problem Description 两道题解决的问题相似,都是求解给定序列中满足某种数学特征(和最大/乘积最大)的子序列,虽然不需要将该子序列输出. 留意的关键字眼是:containing at

UVa 108 - Maximum Sum(最大连续子序列)

题目来源:https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=3&page=show_problem&problem=44  Maximum Sum  Background A problem that is simple to solve in one dimension is often much more difficult to solve in more th

URAL 1146. Maximum Sum(求最大子矩阵和)

题目链接:http://acm.timus.ru/problem.aspx?space=1&num=1146 1146. Maximum Sum Time limit: 0.5 second Memory limit: 64 MB Given a 2-dimensional array of positive and negative integers, find the sub-rectangle with the largest sum. The sum of a rectangle is

ural 1146. Maximum Sum

1146. Maximum Sum Time limit: 0.5 secondMemory limit: 64 MB Given a 2-dimensional array of positive and negative integers, find the sub-rectangle with the largest sum. The sum of a rectangle is the sum of all the elements in that rectangle. In this p

Timus 1146. Maximum Sum

1146. Maximum Sum Time limit: 0.5 secondMemory limit: 64 MB Given a 2-dimensional array of positive and negative integers, find the sub-rectangle with the largest sum. The sum of a rectangle is the sum of all the elements in that rectangle. In this p

UVA - 108 - Maximum Sum (简单贪心)

UVA - 108 Maximum Sum Time Limit: 3000MS   Memory Limit: Unknown   64bit IO Format: %lld & %llu Submit Status Description Background A problem that is simple to solve in one dimension is often much more difficult to solve in more than one dimension.

ural 1146 Maximum Sum 最大连续和

1146. Maximum Sum Time limit: 0.5 second Memory limit: 64 MB Given a 2-dimensional array of positive and negative integers, find the sub-rectangle with the largest sum. The sum of a rectangle is the sum of all the elements in that rectangle. In this