java虚拟机3.运行时内存异常

在java虚拟机规范的描述中,除了程序计数器外,虚拟机内存的其他几个运行时区域都有发生OutOfMemoryError异常的可能。

  • java堆溢出

java堆用于存储对象实例,只要不断的创建对象,并且保证GC Roots到对象之间有可达路径来避免垃圾回收机制清除这些对象,那么在对象数量达到最大堆得容量限制后就会产生内存溢出异常。当出现java堆内存溢出时,异常堆栈信息"java.lang.OutOfMemoryError"会跟着进一步提示"java heap space".要解决这个区域的异常,一般手段是先通过内存映像分析工具对Dump出来的堆转储快照进行分析,重点确认内存中的对象是否是必要的,分清楚到底是出现了内存泄漏还是内存溢出。

如果是内存泄漏,可进一步通过工具查看泄漏对象到GC Roots的引用链。于是就能找到泄漏对象是通过怎样的路径与GC Roots相关联并导致垃圾收集器无法自动回收它们。掌握了泄漏对象的类型信息及GC Roots引用链的信息,就可以比较准确地定位出泄漏代码的位置。

如果不存在泄漏,换句话说,就是内存中的对象确实都还必须活着,那就应当检查虚拟机的堆参数(-Xmx与-Xms),与机器物理内存对比看是否还可以调大,从代码上检查是否某些对象生命周期过长、持有状态时间过长的情况,尝试减少程序运行期的内存消耗。

  • 虚拟机栈和本地方法栈溢出

对于HotSpot,并不区分虚拟机栈和本地方法栈,虽然-Xoss参数存在(设置本地方法栈),但实际上是无效的,栈容量只由-Xss参数设定。关于虚拟机栈和本地方法栈,在java虚拟机规范中描述了两种异常:

如果线程请求的栈深度大于虚拟机所允许的最大深度,将抛出StackOverflowError异常。如果虚拟机在扩展时无法申请到足够的内存空间,则抛出OutOfMemoryError异常。这里把异常分成两种情况,看似更加严谨,但却存在着一些互相重叠的地方,当栈空间无法继续分配时,到底是内存太小,还是已使用的栈空间太大,其本质上只是对同一件事情的两种描述而已。

实际实验表明(使用-Xss参数减少栈内存容量或者定义大量本地变量,增大方法帧中本地变量表长度),在单线程下,无论是由于栈帧太大还是虚拟机栈容量太小,当内存无法分配的时候,虚拟机抛出的都是StackOverflowError异常。

如果对于多线程,通过不断地建立线程的方式倒是可以产生内存溢出异常,但是这样产生的内存溢出异常与栈空间是否足够大并不存在任何关系,在这种情况下,为每个线程的栈分配的内存越大,反而越容易产生内存溢出异常。毕竟操作系统分配给每个进程的内存是有限的,比如32位Windows现在为2GB。虚拟机提供了参数来控制java堆和方法区这两部分内存的最大值。剩余的内存为2GB减去Xmx(最大堆容量),再减去MaxPermSize(最大方法区容量),程序计数器消耗内存很小,可以忽略。如果虚拟机进程本身耗费的内存不计算在内,剩下的内存就由虚拟机栈和本地方法栈瓜分了。每个线程分配到的栈容量越大,可以建立的线程数自然就越少,建立线程时就越容易把剩下的内存耗尽。

如果是建立过多线程导致的内存溢出,在不能减少线程数或者更换64位虚拟机的情况下,就只能通过减少最大堆和减少栈容量来换取更多的线程。

  • 方法区和运行时常量池溢出

String.intern()是一个Native方法,它的作用是:如果字符串常量池中已经包含一个等于此String对象的字符串,则返回常量池中这个字符串的对象;否则,将此String对象包含的字符串添加到常量池中,并返回此String对象的引用。在JDK 1.6及之前的版本中,由于常量池分配在永久代内,我们可以通过-XX:PermSize和-XX:MaxPermSize限制方法区大小,从而间接限制其中常量池的容量。

public class Test {
    public static void main(String[] args) {
                //使用list保持着常量池的引用,避免Full GC回收常量池行为
                List<String> list = new ArrayList<String>();
        int i = 0;
        while(true) {
            list.add(String.valueOf(i++).intern());
        }
    }
}
Exception in thread "main" java.lang.OutOfMemoryError: PermGen space
    at java.lang.String.intern(Native Method)
    at com.proxy.Test.main(Test.java:11)

从结果看,运行时常量池溢出,在OutOfMemoryError后面跟着PermGen space,说明运行时常量池属于方法区(HotSpot虚拟机的永久代)的一部分。而JDK 1.7的运行将出现不一样的结果,会一直循环下去,因为1.7之后将常量池从永久代中移出了。

public class Test {
    public static void main(String[] args) {
        String str1 = new StringBuilder("iphone").append("plus").toString();
        System.out.println(str1.intern() == str1);

        String str2 = new StringBuilder("ja").append("va").toString();
        System.out.println(str2.intern() == str2);
    }
}

上面的代码在JDK 1.6中运行,会得到两个false,而在JDK 1.7中运行,会得到一个true和一个false。原因是在1.6中,intern()会把首次遇到的字符串实例复制到永久代中,返回的也是永久代中这个字符串实例的引用,而由StringBuilder创建的字符串实例在java堆上,所有必然不是同一个引用,将返回false。而1.7的intern()实现不会再复制实例,只是在常量池中纪录首次出现的实例引用,因此intern()返回的引用和由StringBuilder创建的字符串实例是同一个。str2返回false是因为java这个字符串在执行StringBuilder.toString()之前已经出现过,字符串常量池中已经有它的引用了,不符合“首次出现”的原则,而计算机软件则是首次出现的,因此返回true。

方法区用于存放Class的相关信息,如类名、访问修饰符、常量池、字段描述、方法描述等。对于这些区域的测试,基本思路就是运行时产生大量的类去填满方法区,直到溢出。利用Java api可以动态产生类,比如反射和动态代理等,这里借助CGLib直接操作字节码运行时生成动态类。在主流框架中,如Spring, Hibernate对类进行增强时,都会使用到CGLib这类字节码技术,增强的类越多,就需要越大的方法区来保证动态生成的Class可以加载如内存。另外,JVM上的动态语言,如Groovy等,通常都会持续创建类来实现语言的动态性。

方法区溢出也是一种常见的内存溢出异常,一个类要被垃圾收集器回收掉,判定条件是比较苛刻的。在经常生成大量Class的应用中,需要特别注意类的回收状况。常见有大量JSP或动态产生JSP文件的应用(JSP第一次运行时需要编译为java类)、以及基于OSGi的应用(即使是同一个类文件,被不同的加载器加载也会视为不同的类)等。

  • 本机直接内存溢出

DirectMemory容量可以通过-XX:MaxDirectMemorySize指定,若不指定,则默认与java堆最大值(-Xmx)一样。

#笔记内容参考《深入理解java虚拟机》

原文地址:https://www.cnblogs.com/shanhm1991/p/9907573.html

时间: 2024-10-09 13:06:11

java虚拟机3.运行时内存异常的相关文章

java虚拟机2.运行时内存对象

对象的创建 虚拟机遇到一条new指令时,首先去检查这个指令的参数是否能在常量池中定位到一个类的符号引用,并且检查这个符号引用代表的类是否已被加载.解析和初始化过. 在类加载检查通过后,接下来虚拟机将为新生对象分配内存.对象所需内存的大小在类加载完成后便可完全确定,为对象分配空间的任务等同于把一块确定大小的内存从java堆中划分出来. 假设java堆中内存是绝对规整的,所有用过的内存都放在一边,空闲的内存放在另一边,中间放着一个指针作为分界点的指示器,那分配内存就仅仅是把那个指针向空闲空间那边挪动

深入理解Java虚拟机:运行时数据区域

Java虚拟机在执行Java程序的过程中会把它所管理的内存划分为若干个不同的数据区域.这些区域都有各自的用途,以及创建和销毁的时间,有的区域随着虚拟机进程的启动而存在,有些区域则依赖用户线程的启动和结束而建立和销毁.根据<Java虚拟机规范(Java SE 7版)>的规定,Java虚拟机所管理的内存将会包括以下几个运行时数据区域. 程序计数器 程序计数器(Program Counter Register)是一块较小的内存空间,它可以看作是当前线程所执行的字节码的行号指示器.在虚拟机的概念模型里

深入理解Java虚拟机笔记---运行时栈帧结构

栈帧(Stack Frame)是用于支持虚拟机进行方法调用和方法执行的数据结构,它是虚拟机运行时数据区的虚拟机栈(Virtual Machine Stack)的栈元素.栈帧存储了方法的局部变量表,操作数栈,动态连接和方法返回地址等信息.第一个方法从调用开始到执行完成,就对应着一个栈帧在虚拟机栈中从入栈到出栈的过程. 每一个栈帧都包括了局部变量表,操作数栈,动态连接,方法返回地址和一些额外的附加信息.在编译代码的时候,栈帧中需要多大的局部变量表,多深的操作数栈都已经完全确定了,并且写入到了方法表的

深入JAVA虚拟机之运行时数据区

前言最近在啃一本书<深入JAVA虚拟机>,这本书不是第一次看,可以说是从大学就开始看,这一次应该算第三次啃这本书,也应该说算是第一次真正啃这本书.大学的时候,只是好奇表层的一些神奇现象,随着工作几年后,现在回过头来再次啃这本书,对于表层的那些以前觉得神奇的现在已经感觉乏味,反而对于底层是如何实现.如何运作的越来越着迷.这也是这次看这本书的初衷.通过写博客记录下自己的学习过程,也方便以后回头看看现在的看法想法在将来会变成怎样.如果我在下面的文字表述上或者理解上有误解或者错误,请各位大神能够留言指

对象与运行时内存

和大多数猴子一样,我原来也抵触对原理的学习, 后来发现掌握了原理才有了那种了然于胸,运筹帷幄的感觉,也就是顿悟. 这里主要介绍Java对象与运行时内存的知识. java运行时内存 Program Counter Registe(程序计数器): 记录当前线程执行字节码的位置,相当于行号指示器,为线程私有的. Java Virtual Machine Stacks(java虚拟机栈): 存放方法出口信息.局部变量表(对象引用.基本类型数据等),为线程私有的. Native Method Stack(

深入理解java虚拟机一 JAVA运行时内存区域与class文件

一 JAVA运行时内存区域 JVM在加载class文件时,会将class文件定义的数据结构转为运行时内存中的数据,那么jvm是如何安排运行时的内存区域呢? jvm将运行时内存划分为以下几个部分: 堆:所有线程共享 方法区:类信息.静态变量.常量等 运行时常量池:class文件的常量池(字面常量和符号引用)+运行时产生的常量 程序计数器:  当前线程执行的字节码的行号指示器 虚拟机栈:栈帧 = 本地局部变量表.操作数栈.动态链接.出口信息 本地方法栈:native方法 直接内存:不属于jvm管理,

Java虚拟机结构及常见内存溢出异常

每个Java虚拟机都有一个类加载器子系统,根据某个全限定名来装入类型,同样每个Java虚拟机都有一个执行引擎,它负责执行那些包含在被装载类的方法中的指令. 当虚拟机运行一个程序时,就需要从已加载的文件中得到信息,将这些信息组织到运行时数据区,以便于管理. Java运行时的数据区域划分 1.程序计数器:程序计数器是一块较小的内存空间,可以看做是当前线程的字节码的行号指示器. Java虚拟机的多线程是通过线程轮流切换并分配处理器执行时间的方式来实现的,在任何一个时刻,一个处理器只会执行一条线程中的指

java运行时内存模式学习

学习java运行时内存模式: 各区介绍: 方法区(线程共享):用于存放被虚拟机加载的类的元数据:静态变量,常量,以及编译和的代码(字节码),也称为永久代(所有该类的实例被回收,或者此类classLoader被回收). Java堆(线程共享):存放对象实例和数组,这里是内存回收的主要地方.可以分为新生代(young)和年老代(tenured).从字面也可以知道,新生代存放刚刚建立的对象 而年老代存放长久没有被垃圾回收机制回收的对象.一般新生代有分为eden,from survivor和to sur

获取java程序运行时内存信息

由于最近想自己动手测试一下String和StringBuffer的效率问题,需要获取程序运行时的内存占中信息,于是上网查了一下,根据查到的资料写了个程序,发现结果有问题,才发现查到的资料是错误的.所以在这里跟大家分享一下获取内存占用的正确方法 错误的方法 //程序开始时:(先调用一下垃圾回收,但是不一定立即执行) Runtime.getRuntime().gc(); long initm=Runtime.getRuntime().freeMemory(); //程序结束时: Runtime.ge