类 斐波那契

class Fab(object):
    def __init__(self,max):
        self.max = max
        self.n ,self.a ,self.b = 0 ,0 ,1

    def __iter__(self):        #继承object,重写__iter__后,自动调用__next__方法,返回r对象
        return self

    def __next__(self):        #此处python2为next,python3为__next__,注意区别
        if self.b <= self.max:
            r = self.b
            self.a , self.b = self.b , self.a + self.b
            return r
        raise StopIteration()

#Fab 类通过 next() 不断返回数列的下一个数,内存占用始终为常数:
for i in Fab(100):
    print(i,end=‘ ‘)
#或者
# print(next(iter(Fab(5))))

原文地址:https://www.cnblogs.com/augustyang/p/9928343.html

时间: 2024-10-30 06:25:21

类 斐波那契的相关文章

[矩阵快速幂] 数列(类斐波那契

数列 题目描述 a[1]=a[2]=a[3]=1 a[x]=a[x-3]+a[x-1] 求a数列的第n项对1000000007(10^9+7)取余的值. 输入 第一行一个整数T,表示询问个数. 以下T行,每行一个正整数n. 输出 每行输出一个非负整数表示答案. 样例输入 3 6 8 10 样例输出 4 9 19 提示 对于30%的数据 n<=100: 对于60%的数据 n<=2*10^7: 对于100%的数据 T<=100,n<=2*10^9: emmm基本就是一道矩阵快速幂的裸题

【CF446C】DZY Loves Fibonacci Numbers (线段树 + 斐波那契数列)

Description ? 看题戳我 给你一个序列,要求支持区间加斐波那契数列和区间求和.\(~n \leq 3 \times 10 ^ 5, ~fib_1 = fib_2 = 1~\). Solution ? 先来考虑一段斐波那契数列如何快速求和,根据性质有 \[ \begin {align} fib_n &= fib_{n - 1} + fib_{n - 2} \ &= fib_ {n - 2} + fib_{n - 3} + fib_{n - 2} \ &= fib_{n -

----斐波那契数列---eval函数----类递归思想 栈 进出 思想

------------ 斐波那契 数列 --------------- [1,1,2,3,5,8,13,21,34,...] 1 列表方法实现 # l=[1,1] # # # while len(l)<=20: # # l.append(l[-1]+l[-2]) # # print(l) # # while len(l)!=4: # l.append(l[-1]+l[-2]) # print(l) # 2 迭代实现 # n=10 # # n1 = 1 # n2 = 1 # n3 = 1 # #

两个关于数列的Python脚本(斐波那契数列和猴子吃香蕉类问题)

斐波那契数列(Fibonacci sequence),因数学家列昂纳多·斐波那契(Leonardoda Fibonacci)以兔子繁殖为例子而引入,故又称为"兔子数列",又因其相邻两项的比无限接近黄金分割比例,所以又称为黄金分割数列,指的是这样一个数列:1.1.2.3.5.8.13.21.34.--,即后一项是前两项的和. #!/usr/bin/python #coding:utf-8 #斐波那契数列 x=[0,1] for i in range(int(raw_input('请输入数

浅谈C#中的斐波拉契数列

突然对那些有趣的数学类知识感兴趣了,然后就简单研究了一下斐波拉契数列,看看它的有趣之处! 斐波拉契数列(Fibonacci Sequence),又称黄金分割数列,该数列由意大利的数学家列奥纳多·斐波那契发现的.这种数列指的是这样一个数列:0.1.1.2.3.5.8.13.21. 34.--在数学上,斐波纳契数列以如下被以递归的方法定义:F(0)=0,F(1)=1,F(n)=F(n-1)+F(n-2)(n≥2,n∈N*). 用C#实现斐波拉契数列的代码: Console.Write("请输入一个长

算法笔记_001:斐波那契数的多种解法

本篇文章解决的问题来源于算法设计与分析课程的课堂作业,主要是运用多种方法来计算斐波那契数.具体问题及解法如下: 一.问题1: 问题描述:利用迭代算法寻找不超过编程环境能够支持的最大整数的斐波那契数是第几个斐波那契数.(Java: 231-1 for int, 263-1 for long) 解决方案:针对问题1,此处要使用迭代法来解决,具体实现代码如下: //用迭代法寻找编程环境支持的最大整数(int型)的斐波那契数是第几个斐波那契数 public static int max_int_iter

hdoj 2516 取石子游戏(斐波那契博弈)

Problem Description 1堆石子有n个,两人轮流取.先取者第1次可以取任意多个,但不能全部取完.以后每次取的石子数不能超过上次取子数的2倍.取完者胜.先取者负输出"Second win".先取者胜输出"First win". Input 输入有多组.每组第1行是2<=n<2^31. n=0退出. Output 先取者负输出"Second win". 先取者胜输出"First win". 参看Samp

斐波那契数列——摘自搜狗百科

1数列公式 递推公式 斐波那契数列:0.1.1.2.3.5.8.13.21.34.55.89.144... 如果设F(n)为该数列的第n项(n∈N*),那么这句话可以写成如下形式: F(0) = 0,F(1)=F(2)=1,F(n)=F(n-1)+F(n-2) (n≥3) 通项公式 通项公式的推导方法一:利用特征方程 线性递推数列的特征方程为: X^2=X+1 解得 X1=(1+√5)/2, X2=(1-√5)/2. 斐波拉契数列则F(n)=C1*X1^n + C2*X2^n ∵F(1)=F(2

"二分查找(Binary Search)"与"斐波那契查找(Fibonacci Search)"

首先,我们来看一个笔者的拙作,一段二分查找代码 //返回值是key的下标,如果A中不存在key则返回-1 template <class T> int BinSearch(T* A, const T &key, int lo, int hi) {     int mid;     while(lo<hi)     {         mid = lo + (hi-lo)/2;         if(key < A[mid])             hi = mid-1;