Android性能优化:谈谈Bitmap的内存管理与优化

最近除了忙着项目开发上的事情,还有就是准备我的毕业论文,有一小段时间没写博客了,今晚难得想总结一下,刚好又有一点时间,于是凑合着来一篇,好了,唠叨话不多说,直接入正题。从事Android移动端的开发以来,想必是经常要与内存问题打交道的,说到Android开发中遇到的内存问题,像Bitmap这种吃内存的大户稍微处理不当就很容易造成OOM,当然,目前已经有很多知名的开源图片加载框架,例如:ImageLoader,Picasso等等,这些框架已经能够很好的解决了Bitmap造成的OOM问题,虽然这些框架能够节省很多开发者的宝贵时间,但是也会遇到一种情况,很多初学者只是会简单的去调用这些框架的提供的接口,被问到框架内部的一些实现原理,基本上都是脑中一片空白。从我的观点出发,我认为如果能够掌握一些框架原理,想必对我们进行应用调优的意义是非常重大的,今天,主要是是想谈谈,如果没有了图片加载框架,我们要怎么去处理Bitmap的内存问题呢?

谈到Bitmap处理的问题,我们可能要先来了解一些基础的知识,关于Bitmap在Android虚拟机中的内存分配,在Google的网站上给出了下面的一段话

大致的意思也就是说,在Android3.0之前,Bitmap的内存分配分为两部分,一部分是分配在Dalvik的VM堆中,而像素数据的内存是分配在Native堆中,而到了Android3.0之后,Bitmap的内存则已经全部分配在VM堆上,这两种分配方式的区别在于,Native堆的内存不受Dalvik虚拟机的管理,我们想要释放Bitmap的内存,必须手动调用Recycle方法,而到了Android 3.0之后的平台,我们就可以将Bitmap的内存完全放心的交给虚拟机管理了,我们只需要保证Bitmap对象遵守虚拟机的GC Root Tracing的回收规则即可。OK,基础知识科普到此。接下来分几个要点来谈谈如何优化Bitmap内存问题。

1.Bitmap的引用计数方式(针对Android3.0之前平台的优化方案,先上Demo Code)

private int mCacheRefCount = 0;//缓存引用计数器
private int mDisplayRefCount = 0;//显示引用计数器
...
// 当前Bitmap是否被显示在UI界面上
public void setIsDisplayed(boolean isDisplayed) {
    synchronized (this) {
        if (isDisplayed) {
            mDisplayRefCount++;
            mHasBeenDisplayed = true;
        } else {
            mDisplayRefCount--;
        }
    }

    checkState();
}

//标记是否被缓存
public void setIsCached(boolean isCached) {
    synchronized (this) {
        if (isCached) {
            mCacheRefCount++;
        } else {
            mCacheRefCount--;
        }
    }

    checkState();
}

//用于检测Bitmap是否已经被回收
private synchronized void checkState() {
    if (mCacheRefCount <= 0 && mDisplayRefCount <= 0 && mHasBeenDisplayed
            && hasValidBitmap()) {
        getBitmap().recycle();
    }
}

private synchronized boolean hasValidBitmap() {
    Bitmap bitmap = getBitmap();
    return bitmap != null && !bitmap.isRecycled();
}

上面的实例代码,它使用了引用计数的方法(mDisplayRefCount 与 mCacheRefCount)来追踪一个bitmap目前是否有被显示或者是在缓存中. 当下面条件满足时回收bitmap:

mDisplayRefCount 与 mCacheRefCount 的引用计数均为 0.

bitmap不为null, 并且它还没有被回收.

2.使用缓存,LruCache和DiskLruCache的结合

关于LruCache和DiskLruCache,大家一定不会陌生(有疑问的朋友可以去API官网搜一下LruCache,而DiskLrucCache可以参考一下这篇不错的文章:DiskLruCache使用介绍),出于对性能和app的考虑,我们肯定是想着第一次从网络中加载到图片之后,能够将图片缓存在内存和sd卡中,这样,我们就不用频繁的去网络中加载图片,为了很好的控制内存问题,则会考虑使用LruCache作为Bitmap在内存中的存放容器,在sd卡则使用DiskLruCache来统一管理磁盘上的图片缓存。

3.SoftReference和inBitmap参数的结合

在第二点中提及到,可以采用LruCache作为存放Bitmap的容器,而在LruCache中有一个方法值得留意,那就是entryRemoved,按照文档给出的说法,在LruCache容器满了需要淘汰存放其中的对象腾出空间的时候会调用此方法(注意,这里只是对象被淘汰出LruCache容器,但并不意味着对象的内存会立即被Dalvik虚拟机回收掉),此时可以在此方法中将Bitmap使用SoftReference包裹起来,并用事先准备好的一个HashSet容器来存放这些即将被回收的Bitmap,有人会问,这样存放有什么意义?之所以会这样存放,还需要再提及到inBitmap参数(在Android3.0才开始有的,详情查阅API中的BitmapFactory.Options参数信息),这个参数主要是提供给我们进行复用内存中的Bitmap,如果设置了此参数,且满足以下条件的时候:

  • Bitmap一定要是可变的,即inmutable设置一定为ture;
  • Android4.4以下的平台,需要保证inBitmap和即将要得到decode的Bitmap的尺寸规格一致;
  • Android4.4及其以上的平台,只需要满足inBitmap的尺寸大于要decode得到的Bitmap的尺寸规格即可;

在满足以上条件的时候,系统对图片进行decoder的时候会检查内存中是否有可复用的Bitmap,避免我们频繁的去SD卡上加载图片而造成系统性能的下降,毕竟从直接从内存中复用要比在SD卡上进行IO操作的效率要提高几十倍。写了太多文字,下面接着给出几段Demo Code

Set<SoftReference<Bitmap>> mReusableBitmaps;
private LruCache<String, BitmapDrawable> mMemoryCache;

// 用来盛放被LruCache淘汰出列的Bitmap
if (Utils.hasHoneycomb()) {
    mReusableBitmaps =
            Collections.synchronizedSet(new HashSet<SoftReference<Bitmap>>());
}

mMemoryCache = new LruCache<String, BitmapDrawable>(mCacheParams.memCacheSize) {

    // 当LruCache淘汰对象的时候被调用,用于在内存中重用Bitmap,提高加载图片的性能
    @Override
    protected void entryRemoved(boolean evicted, String key,
            BitmapDrawable oldValue, BitmapDrawable newValue) {

        if (RecyclingBitmapDrawable.class.isInstance(oldValue)) {

            ((RecyclingBitmapDrawable) oldValue).setIsCached(false);
        } else {

            if (Utils.hasHoneycomb()) {

                mReusableBitmaps.add
                        (new SoftReference<Bitmap>(oldValue.getBitmap()));
            }
        }
    }
....
}

private static void addInBitmapOptions(BitmapFactory.Options options,
        ImageCache cache) {
        //将inMutable设置true,inBitmap生效的条件之一
    options.inMutable = true;

    if (cache != null) {
        // 尝试寻找可以内存中课复用的的Bitmap
        Bitmap inBitmap = cache.getBitmapFromReusableSet(options);

        if (inBitmap != null) {

            options.inBitmap = inBitmap;
        }
    }
}

// 获取当前可以满足复用条件的Bitmap,存在则返回该Bitmap,不存在则返回null
protected Bitmap getBitmapFromReusableSet(BitmapFactory.Options options) {
        Bitmap bitmap = null;

    if (mReusableBitmaps != null && !mReusableBitmaps.isEmpty()) {
        synchronized (mReusableBitmaps) {
            final Iterator<SoftReference<Bitmap>> iterator
                    = mReusableBitmaps.iterator();
            Bitmap item;

            while (iterator.hasNext()) {
                item = iterator.next().get();

                if (null != item && item.isMutable()) {

                    if (canUseForInBitmap(item, options)) {
                        bitmap = item;
                        iterator.remove();
                        break;
                    }
                } else {

                    iterator.remove();
                }
            }
        }
    }
    return bitmap;
}

//判断是否满足使用inBitmap的条件
static boolean canUseForInBitmap(
        Bitmap candidate, BitmapFactory.Options targetOptions) {

    if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.KITKAT) {
        // Android4.4开始,被复用的Bitmap尺寸规格大于等于需要的解码规格即可满足复用条件
        int width = targetOptions.outWidth / targetOptions.inSampleSize;
        int height = targetOptions.outHeight / targetOptions.inSampleSize;
        int byteCount = width * height * getBytesPerPixel(candidate.getConfig());
        return byteCount <= candidate.getAllocationByteCount();
    }

    // Android4.4之前,必须满足被复用的Bitmap和请求的Bitmap尺寸规格一致才能被复用
    return candidate.getWidth() == targetOptions.outWidth
            && candidate.getHeight() == targetOptions.outHeight
            && targetOptions.inSampleSize == 1;
}

4.降低采样率,inSampleSize的计算

相信大家对inSampleSize是一定不会陌生的,所以此处不再做过多的介绍,关于降低采样率对inSampleSize的计算方法,我看到网上的算法有很多,下面的这段算法应该是最好的算法了,其中还考虑了那种宽高相差很悬殊的图片(例如:全景图)的处理。

public static int calculateInSampleSize(BitmapFactory.Options options,int reqWidth, int reqHeight) {
        // Raw height and width of image
        final int height = options.outHeight;
        final int width = options.outWidth;
        int inSampleSize = 1;

        if (height > reqHeight || width > reqWidth) {

            final int halfHeight = height / 2;
            final int halfWidth = width / 2;

            while ((halfHeight / inSampleSize) > reqHeight && (halfWidth / inSampleSize) > reqWidth) {
                inSampleSize *= 2;
            }

            long totalPixels = width / inSampleSize * height / inSampleSize ;

            final long totalReqPixelsCap = reqWidth * reqHeight * 2;

            while (totalPixels > totalReqPixelsCap) {
                inSampleSize *= 2;
                totalPixels /= 2;
            }
        }
        return inSampleSize;

5.采用decodeFileDescriptor来编码图片(暂时不知道原理,欢迎高手指点迷津)

关于采用decodeFileDescriptor去处理图片可以节省内存这方面,我在写代码的时候进行过尝试,确实想比其他的decode方法要节省内存,查询了网上的解释,不是很清楚,自己看了一些源代码也弄不出个名堂,为什么使用这种方式就能够节省内存一些呢,如果有明白其中原理的高手,欢迎解答我的疑惑

到此,关于Bitmap处理的几个优化点已经分析完毕,就目前来说,可能大家在开发的过程习惯了使用框架来加载图片,所以不大在意图片内存处理的相关问题,如果你想知道一些优化Bitmap内存原理或者想自己做一个优秀的图片加载框架,希望本文能够为你提供一点点思路。如果读者觉得文章有错误,欢迎在下方评论中批评指正。

时间: 2024-11-02 23:32:56

Android性能优化:谈谈Bitmap的内存管理与优化的相关文章

浅谈C++容器动态内存管理的优化

在信息学竞赛中,C++的容器的用途非常广泛,但经常因常数过大而超时.怎样才能提高它们的效率呢? 我们知道,容器是存储同一类对象的对象,既然"对象"我们无法改变,那么我们只能从"存储"入手,不难想到,不同容器在实现上的根本区别是它们对应着不同的内存组织方式,内存管理无疑是这种实现的核心,所以优化内存管理是加快容器效率的最好途径之一. 一.内存分配器简介 怎样才能优化内存管理呢?很简单,C++为我们提供了这样的接口,我们可以通过自定义容器模板中的最后一个allocato

Android性能调优篇之内存泄露

详细内容请查看我的简书地址:Android性能调优篇之内存泄露 或者我的个人博客地址:Android性能调优篇之内存泄露

Android性能优化:谈话Bitmap内存管理和优化

最近除了那些忙着项目开发的事情,目前正在准备我的论文.短的时间没有写博客,今晚难得想总结.只要有一点时间.因此,为了凑合用,行.唠叨罗嗦,直接进入正题. 从事Android自移动终端的发展,想必是常常要与内存问题打交道的,说到Android开发中遇到的内存问题,像Bitmap这样的吃内存的大户略微处理不当就非常easy造成OOM,当然,眼下已经有非常多知名的开源图片载入框架,比如:ImageLoader.Picasso等等,这些框架已经能够非常好的攻克了Bitmap造成的OOM问题,尽管这些框架

Android内存管理、优化

RAM对于软件开发环境而言是有价值的资源,但它对受限于物理内存限制的操作系统具有更大的价值.即使Android Runtime和Dalvik virtual machein执行常规的垃圾回收,但这并不意味着你可以忽略app在何时何地指派和释放内存.你仍然需要去避免产生内存泄露.比如长期持有静态成员变量常常引起内存泄露,你应该在合适的时间,比如在生命周期回调函数处释放一些引用对象,来避免内存泄露的发生. 这篇文章将阐述怎样在app中主动的降低内存消耗.关于java编程中清理资源的一般实践,请参照其

优化—对Bitmap的内存优化

在Android应用里,最耗费内存的就是图片资源.而且在Android系统中,读取位图Bitmap时,分给虚拟机中的图片的堆栈大小只有8M,如果超出了,就会出现OutOfMemory异常.所以,对于图片的内存优化,是Android应用开发中比较重要的内容. 1) 要及时回收Bitmap的内存 Bitmap类有一个方法recycle(),从方法名可以看出意思是回收.这里就有疑问了,Android系统有自己的垃圾回收机制,可以不定期的回收掉不使用的内存空间,当然也包括Bitmap的空间.那为什么还需

内存管理的优化

二.内存管理2.1 循环引用说明:如果循环引用中包含 DOM 对象或者 ActiveX 对象,那么就会发生内存泄露.内存泄露的后果是在浏览器关闭前,即使是刷新页面,这部分内存不会被浏览器释放.简单的循环引用:var el = document.getElementById('MyElement');var func = function () {-}el.func = func;func.element = el;但是通常不会出现这种情况.通常循环引用发生在为 dom 元素添加闭包作为 expe

谈谈OC的内存管理 (2013-01-08 09:28:14)

苹果的内存有限,为了更好的用户体验,需要手动管理内存.从网上copy,也 一 基本原理 Objective-C的内存管理机制与Java那种全自动的垃圾回收机制是不同的,它本质上还是C语言中的手动管理方式,只不过稍加了一些自动方法. 1,OC采用了引用计数(retain count)对对象内存进行管理,例如,某个对象alloc了,那么这个对象的引用计数就加1,retain时加1,当对象不需要用时就需要销毁对象,释放内存,需要对象调用release方法,release会让引用计数减1,只有引用计数消

Android_对android虚拟机的理解,包括内存管理机制垃圾回收机制。dalvik和art区别

虚拟机很小,空间很小,谈谈移动设备的虚拟机的大小限制 16M ,谈谈加载图片的时候怎么处理大图片的,outmemoryExceptionBitmapFactory.option 垃圾回收,没有引用的对象,在某个时刻会被系统gc掉 . Dalvik和标准Java虚拟机(JVM)首要差别Dalvik 基于寄存器,而 JVM 基于栈.基于寄存器的虚拟机对于编译后变大的程序来说,在它们执行的时候,花费的时间更短.Dalvik和Java运行环境的区别1:Dalvik主要是完成对象生命周期管理,堆栈管理,线

性能篇(七)内存管理概述

Android运行时ART和Dalvik虚拟机使用分页和内存映射(mmapping)管理内存.这意味着所有被修改过的内存——无论是通过分配新的对象还是触摸被映射的页——仍然驻留在RAM中并且不能移除分页.唯一从应用中释放内存的方法是释放应用持有的对象引用,让内存能够被垃圾收集器使用.但有一个例外:如果系统想在其它地方使用内存,那么所有被映射但没有被修改的文件,比如代码,可能会被从RAM的分页中移除. 本文将阐述Android如何管理应用进程和内存分配.更多关于如何更有效管理应用内存的信息,请查阅