STM32系统时钟

一、时钟树

STM32有4个时钟源:

1)HSE(高速外部时钟源)  外部晶振作为时钟源,范围为4~16MHz,常取为8MHz

2)HSI(高速内部时钟源)  由内部RC振荡器产生,频率为8MHz,但不稳定

3)LSE(低速外部时钟)     以外部晶振作为时钟源,主要供给实时时钟模块,一般用32.768KHz。

4)LSI(低速内部时钟)        
由内部RC振荡器产生,也是提供给实时时钟模块,频率约为40KHz。

二、系统启动过程中时钟设置

  以使用STM32库函数SystemInit为例进行说明:

上电后:默认使用HSI

SystemInit: 倘若调用了函数SetSysClockTo72,将启用外部晶振HSE,并将系统时钟设置到72MHz。

附SetSysClockTo72函数代码:

/**
* @brief Sets System clock frequency to 72MHz and configure HCLK, PCLK2
* and PCLK1 prescalers.
* @note This function should be used only after reset.
* @param None
* @retval None
*/
static void SetSysClockTo72(void)
{
__IO uint32_t StartUpCounter = 0, HSEStatus = 0;

/* SYSCLK, HCLK, PCLK2 and PCLK1 configuration ---------------------------*/
/* Enable HSE */
RCC->CR |= ((uint32_t)RCC_CR_HSEON);

/* Wait till HSE is ready and if Time out is reached exit */
do
{
HSEStatus = RCC->CR & RCC_CR_HSERDY;
StartUpCounter++;
} while((HSEStatus == 0) && (StartUpCounter != HSE_STARTUP_TIMEOUT));

if ((RCC->CR & RCC_CR_HSERDY) != RESET)
{
HSEStatus = (uint32_t)0x01;
}
else
{
HSEStatus = (uint32_t)0x00;
}

if (HSEStatus == (uint32_t)0x01)
{
/* Enable Prefetch Buffer */
FLASH->ACR |= FLASH_ACR_PRFTBE;

/* Flash 2 wait state */
FLASH->ACR &= (uint32_t)((uint32_t)~FLASH_ACR_LATENCY);
FLASH->ACR |= (uint32_t)FLASH_ACR_LATENCY_2;

/* HCLK = SYSCLK */
RCC->CFGR |= (uint32_t)RCC_CFGR_HPRE_DIV1;

/* PCLK2 = HCLK */
RCC->CFGR |= (uint32_t)RCC_CFGR_PPRE2_DIV1;

/* PCLK1 = HCLK */
RCC->CFGR |= (uint32_t)RCC_CFGR_PPRE1_DIV2;

#ifdef STM32F10X_CL
/* Configure PLLs ------------------------------------------------------*/
/* PLL2 configuration: PLL2CLK = (HSE / 5) * 8 = 40 MHz */
/* PREDIV1 configuration: PREDIV1CLK = PLL2 / 5 = 8 MHz */

RCC->CFGR2 &= (uint32_t)~(RCC_CFGR2_PREDIV2 | RCC_CFGR2_PLL2MUL |
RCC_CFGR2_PREDIV1 | RCC_CFGR2_PREDIV1SRC);
RCC->CFGR2 |= (uint32_t)(RCC_CFGR2_PREDIV2_DIV5 | RCC_CFGR2_PLL2MUL8 |
RCC_CFGR2_PREDIV1SRC_PLL2 | RCC_CFGR2_PREDIV1_DIV5);

/* Enable PLL2 */
RCC->CR |= RCC_CR_PLL2ON;
/* Wait till PLL2 is ready */
while((RCC->CR & RCC_CR_PLL2RDY) == 0)
{
}

/* PLL configuration: PLLCLK = PREDIV1 * 9 = 72 MHz */
RCC->CFGR &= (uint32_t)~(RCC_CFGR_PLLXTPRE | RCC_CFGR_PLLSRC | RCC_CFGR_PLLMULL);
RCC->CFGR |= (uint32_t)(RCC_CFGR_PLLXTPRE_PREDIV1 | RCC_CFGR_PLLSRC_PREDIV1 |
RCC_CFGR_PLLMULL9);
#else
/* PLL configuration: PLLCLK = HSE * 9 = 72 MHz */
RCC->CFGR &= (uint32_t)((uint32_t)~(RCC_CFGR_PLLSRC | RCC_CFGR_PLLXTPRE |
RCC_CFGR_PLLMULL));
RCC->CFGR |= (uint32_t)(RCC_CFGR_PLLSRC_HSE | RCC_CFGR_PLLMULL9);
#endif /* STM32F10X_CL */

/* Enable PLL */
RCC->CR |= RCC_CR_PLLON;

/* Wait till PLL is ready */
while((RCC->CR & RCC_CR_PLLRDY) == 0)
{
}

/* Select PLL as system clock source */
RCC->CFGR &= (uint32_t)((uint32_t)~(RCC_CFGR_SW));
RCC->CFGR |= (uint32_t)RCC_CFGR_SW_PLL;

/* Wait till PLL is used as system clock source */
while ((RCC->CFGR & (uint32_t)RCC_CFGR_SWS) != (uint32_t)0x08)
{
}
}
else
{ /* If HSE fails to start-up, the application will have wrong clock
configuration. User can add here some code to deal with this error */
}
}

STM32系统时钟,布布扣,bubuko.com

时间: 2024-11-03 22:16:59

STM32系统时钟的相关文章

STM32系统时钟为什么没有定义呢

对于使用3.5版本库开发的STM32学习者 有时候不清楚为什么没有时钟定义 那么我们就简单的讲解下吧: 1,函数从启动文件开始运行(汇编文件) 2,若是hd.s 请看151行LDR     R0, =SystemInit 3,我们按F12跳到SystemInit 中(包含在system_stm32f10x.c) 4,函数前部分是一些复位配置还有一些调试方面的设置下面的SetSysClock();在这个函数里可以将系统时钟设置成不同频率(24.36.48.56.72)(包含在system_stm3

STM32系统时钟配置,滴答定时器配置相关

以后实在找不到问题出现在哪里,注意还有这么个地方需要留意: 今天在调试滴答定时器,找半天找不到延时为什么不准确,原来以前的代码中,"SYSCLK_FREQ_72MHz"被写成了64MHz了,把这里重新改为72MHz就可以了,走过的路过的,希望这个提醒可以对大家有所帮助,不过大家还是要看实际情况. 原文地址:https://www.cnblogs.com/data-base-of-ssy/p/9513371.html

认识STM32的系统时钟

STM32共有五个时钟源,分别是: HSI是高速内部时钟.RC振荡器,频率为8MHz: HSE是高速外部时钟,频率范围为4~6MHz; (可接石英/陶瓷谐振器或者接外部时钟源) LSI是低速内部时钟,频率40kHz; (独立看门狗时钟源.可作RTC时钟源) LSE是低速外部时钟,频率为32.768kHz石英晶体; (主要RTC时钟源) PLL是锁相环倍频输出,频率可选择为HSI/2.HSE或者HSE/2.倍频可选择2~16倍,但其输出频率最大不超过72MHz: 此处重点介绍系统时钟,一般其他所有

(六)STM32的时钟系统

   在STM32中,一共有5个时钟源,分别是HSI.HSE.LSI.LSE.PLL (1) HSI是高速内部时钟,RC振荡器,频率为8MHz: (2) HSE是高速外部时钟,可接石英/陶瓷谐振器,或者接外部时钟源,频率范围是4MHz – 16MHz: (3) LSI是低速内部时钟,RC振荡器,频率为40KHz: (4) LSE是低速外部时钟,接频率为32.768KHz的石英晶体: (5) PLL为锁相环倍频输出,严格的来说并不算一个独立的时钟源,PLL的输入可以接HSI/2.HSE或者HSE/

stm32之Systick(系统时钟)

Systick的两大作用: 1.可以产生精确延时: 2.可以提供给操作系统一个单独的心跳(时钟)节拍: 通常实现Delay(N)函数的方法为: for(i=0;i<x;i++) ; 对于STM32系统微处理器来说,执行一条指令只有几十ns(纳秒),进入for循环,要实现N毫秒的x值非常大:而由于系统频率的宽广,很难计算出延时N毫秒的精确值:针对STM32微处理器,需要重新设计一个新的方法去实现该功能,以实现在程序中使用Delay(N): cortex的内核中包含一个SysTick时钟,SysTi

6.SysTick系统时钟滴答实验(stm32中断入门)

系统时钟滴答实验很不难,我就在面简单说下,但其中涉及到了STM32最复杂也是以后用途最广的外设-NVIC,如果说RCC是实时性所必须考虑的部分,那么NVIC就是stm32功能性实现的基础,NVIC的难度并不高,但是理解起来还是比较复杂的,我会在本文中从实际应用出发去说明,当然最好去仔细研读宋岩翻译的<Cortex-M3权威指南>第八章,注意这不是一本教你如何编写STM32代码的工具书,而是阐述Cortex-M3内核原理的参考书,十分值得阅读. SysTick系统时钟的核心有两个,外设初始化和S

[转] STM32各种时钟的区别

[原创]:http://m.oschina.net/blog/129357 我在原创的基础又从另一位博主处引用了一些内容. 时钟系统是处理器的核心,所以在学习STM32所有外设之前,认真学习时钟系统是必要的,有助于深入理解STM32.     下面是从网上找的一个STM32时钟框图,比<STM32中文参考手册>里面的是中途看起来清晰一些:         重要的时钟:   PLLCLK,SYSCLK,HCKL,PCLK1,PCLK2 之间的关系要弄清楚; 1.HSI:高速内部时钟信号 stm3

关于STM32系统构架的一点见解

初学32,留下一点自己学习的记录,以便今后参考,大神指明错误不胜感激 一.首先说说STM32F10x芯片由丝印所体现出的共同点和区别. 先简单说说命名规则: 101基本型,102USB基本型,103增强型,105或107互联型. T:36脚,C:48脚,R:64脚,V:100脚,Z:144脚. C:256K SRAM, D:384K SRAM, E:512K SRAM. 我们正对芯片的丝印,会看到芯片左下角会有一个小圆点(正方向),有的在右上角会有一个稍大点的圆圈标记,靠近左下角小圆点的管脚号为

STM32内部时钟设置-寄存器版

STM32寄存器版本--内部时钟设置 同时要记得把延时初始化函数设置好 1 //系统时钟初始化函数 2 //pll:选择的倍频数,从2开始,最大值为16 3 //pll:选择的倍频数,这里使用内部时钟,PLL为4就是4分频 4 void Stm32_Clock_Init(u8 PLL) 5 { 6 unsigned char temp=0; 7 MYRCC_DeInit(); //复位并配置向量表 8 // RCC->CR|=0x00010000; //外部高速时钟使能HSEON 9 RCC->