A*寻路算法入门(一)

大熊猫猪·侯佩原创或翻译作品.欢迎转载,转载请注明出处.

如果觉得写的不好请告诉我,如果觉得不错请多多支持点赞.谢谢! hopy ;)


免责申明:本博客提供的所有翻译文章原稿均来自互联网,仅供学习交流之用,请勿进行商业用途。同时,转载时不要移除本申明。如产生任何纠纷,均与本博客所有人、发表该翻译稿之人无任何关系。谢谢合作!

该篇博客由iOS课程团队的Johann Fradj发布,他现在是一个全职开发iOS的开发者.他是Hot Apps Factory(其是App Cooker的创造者)的共同创建者.

学习A*寻路算法是如何实现的!

你是否在你的游戏中想要怪物或者玩家移动到特定的地点,同时避免墙和障碍物?

如果是,读一读这篇课程,它将向你展示你能用A*寻路算法做些什么!

在网上已经有一些关于A*寻路算法的文章,不过几乎所有的都是面向已经知道基础的有经验的开发者.

本课程将从基本开始将你渐渐带入门径.我们将一步步讨论A*算法是如何工作的,并且包括了大量的图片和例子去示意整个过程.

不管你使用神马编程语言或平台,你都会发现本课程解释的算法对于任何语言来说都是有帮助的.稍后,我们将在课程之后展示一个用Cocos2D实现的iPhone game的例子.

现在泡上一杯香浓可口的咖啡再配上一些美味的零食,让我们开始旅程吧! :]

时间: 2024-12-13 10:25:59

A*寻路算法入门(一)的相关文章

A*寻路算法入门(五)

大熊猫猪·侯佩原创或翻译作品.欢迎转载,转载请注明出处. 如果觉得写的不好请告诉我,如果觉得不错请多多支持点赞.谢谢! hopy ;) 免责申明:本博客提供的所有翻译文章原稿均来自互联网,仅供学习交流之用,请勿进行商业用途.同时,转载时不要移除本申明.如产生任何纠纷,均与本博客所有人.发表该翻译稿之人无任何关系.谢谢合作! 关于A*算法 现在你该知道如何计算每一个方块的分值了(我们将称之为F,它等于G+H),让我们看看A*算法是如何工作的. 这只猫咪将用以下重复的步骤来找到最短路径: 从开发列表

A*寻路算法入门(四)

大熊猫猪·侯佩原创或翻译作品.欢迎转载,转载请注明出处. 如果觉得写的不好请告诉我,如果觉得不错请多多支持点赞.谢谢! hopy ;) 免责申明:本博客提供的所有翻译文章原稿均来自互联网,仅供学习交流之用,请勿进行商业用途.同时,转载时不要移除本申明.如产生任何纠纷,均与本博客所有人.发表该翻译稿之人无任何关系.谢谢合作! 路径评分 我们将给每一个正方形一个分值 G + H : G是从开始点A到当前方块的移动花费.所以对于一个开始A点的邻居方块来说,值为1,但是离开开始点越远它的值会越大. H是

A*寻路算法入门(六)

大熊猫猪·侯佩原创或翻译作品.欢迎转载,转载请注明出处. 如果觉得写的不好请告诉我,如果觉得不错请多多支持点赞.谢谢! hopy ;) 免责申明:本博客提供的所有翻译文章原稿均来自互联网,仅供学习交流之用,请勿进行商业用途.同时,转载时不要移除本申明.如产生任何纠纷,均与本博客所有人.发表该翻译稿之人无任何关系.谢谢合作! 步骤3 我们再一次选择最小F值(5)的瓦块去继续迭代: 这时,只有一个可能的瓦块被添加到开放列表中,因为一个瓦块已经存在于闭合列表,两个瓦块是墙壁. 步骤4 现在我们遇到了一

[转] A*寻路算法C++简单实现

参考文章: http://www.policyalmanac.org/games/aStarTutorial.htm   这是英文原文<A*入门>,最经典的讲解,有demo演示 http://www.cnblogs.com/technology/archive/2011/05/26/2058842.html  这是国人翻译后整理的简版,有简单代码demo,不过有些错误,讲得很清晰,本文图片来自这篇 http://blog.csdn.net/b2b160/article/details/4057

这是一个真正靠谱的寻路算法

绝对没有其他看起来高大上 给别人讲都将不明白的理论.管你 人工智能 啥的 ,还有一百度一大篇的a*算法 ,其实大部分文章的理论都是讲不通的 或者没有讲清楚 更别说代码.做事刨根问底的牛脾气又上来了. 两周前 偶然原因接触到了寻路算法 于是百度 找到了a* .讲来将去大概意思就是持续性的找离目标近的节点 并且走过的节点不能重复走.反正百度搜a*算法 一搜一大片.在很简单的障碍的情况下是没问题 : 但是拐个弯就不行了,不是找最近的么,我让你一直找最近的. 直接迂在里面出不来了: 期间我曾经想过为什么

A*寻路算法的优化与改进

提要 通过对上一篇A*寻路算法的学习,我们对A*寻路应该有一定的了解了,但实际应用中,需要对算法进行一些改进和优化. Iterative Deepening Depth-first search- 迭代深化深度优先搜索 在深度优先搜索中一个比较坑爹情形就是在搜索树的一枝上没有要搜的结果,但是却非常深,甚至深不见底,这样就根本搜索不到结果.为了防止这种情况出现,就出现了Iterative Deepening的思想. 迭代深化搜索(Iterative deepening search, IDS)或者

HTML5-A*寻路算法

设置起点 设置终点 设置障碍 清除障碍 允许斜向跨越 HTML5-A*寻路算法,布布扣,bubuko.com

RCP:gef智能寻路算法(A star)

本路由继承自AbstactRouter,参数只有EditPart(编辑器内容控制器),gridLength(寻路用单元格大小),style(FLOYD,FLOYD_FLAT,FOUR_DIR). 字符集编码为GBK,本文只做简单的代码解析,源码戳我 如果源码不全,可以联系本人. 算法实现主要有三: 1.Astar单向寻路 2.地图预读 3.弗洛伊德平滑算法 Astar寻路的实现: ANode minFNode = null; while (true) { minFNode = findMinNo

第二章 算法入门 合并排序

在第二章中难的算法不多,接下来我会把稍微复杂一点的算法整理一下 #include <iostream> using namespace std; void mergeSort(int *A,int left,int mid,int right) { int *L=new int[mid-left+1]; int *R=new int[right-mid+1]; int i,j; for(i=0;i<mid-left+1;i++) { L[i]=A[left+i]; } for (j=0;