Ray tracing performance benchmark

accel. avg size 3.14
accel. avg depth 16.15
accel. max size 8
accel. max depth 20
accel. GPIT 3.00 MB

trav. steps / ray 15.34
isects / ray 10.13
rps 174892.54

accel. avg size 3.16
accel. avg depth 14.35
accel. max size 16
accel. max depth 56
accel. GPIT 164.89 MB

trav. steps / ray 105.46

isects / ray 14.73
rps 34571.43

时间: 2024-08-04 18:36:03

Ray tracing performance benchmark的相关文章

Intel Code Challenge Final Round (Div. 1 + Div. 2, Combined) C. Ray Tracing

C. Ray Tracing There are k sensors located in the rectangular room of size n × m meters. The i-th sensor is located at point (xi, yi). All sensors are located at distinct points strictly inside the rectangle. Opposite corners of the room are located

【Ray Tracing in One Weekend 超详解】 光线追踪1-10

<Ray Tracing in One Weekend>完结篇 最近课程上机实验,封面图渲染时间也超长,所以写东西就落下了,见谅 这篇之后,我会继续<Ray Tracing The Next Week>,还请多多关注 这几天我在渲染这本书的封面图,封面图还没出,不算结束,刚好安排了10节 今天呢,有两件事: 1.阐述整个工程的文件组织即内容 2.阐述封面,完结 12.1工程文件组织 试过很多方法,问过很多老师,无奈,子类继承实现的父类纯虚函数实在无法和类声明分成两个文件(即声明放于

【Ray Tracing The Next Week 超详解】 光线追踪2-3

 Preface 终于到了激动人心的纹理章节了 然鹅,看了下,并不激动 因为我们之前就接触过 当初有一个 attenuation 吗? 对了,这就是我们的rgb分量过滤器,我们画出的红色.蓝色.绿色等等,都是通过它来控制的 专业点的词语叫做rgb衰减比例,比如rtvec(1.,0.,0.),最后呈现出来的是红色,因为r保留了100% 它是怎么控制的呢,我们来回顾一下这个过程 首先,我们创建一个材质球 后面那个rtvec(0.4,0.2,0.1)就是衰减比例(衰减到原来的百分之..) 之后 进入数

【Ray Tracing The Next Week 超详解】 光线追踪2-6 Cornell box

Chapter 6:Rectangles and Lights 今天,我们来学习长方形区域光照  先看效果 light 首先我们需要设计一个发光的材质 /// light.hpp // ----------------------------------------------------- // [author] lv // [begin ] 2019.1 // [brief ] the areaLight-class for the ray-tracing project // from t

【Ray Tracing The Next Week 超详解】 光线追踪2-7 任意长方体 &amp;&amp; 场景案例

上一篇比较简单,很久才发是因为做了一些好玩的场景,后来发现这一章是专门写场景例子的,所以就安排到了这一篇 Preface 这一篇要介绍的内容有: 1. 自己做的光照例子 2. Cornell box画质问题及优化方案 3. 新的场景几何体——长方体 轴平行长方体 任意长方体 我们这一篇重实践轻理论阐述 ready 1. 需要上一章的知识 但是,上一章的Cornell box画质优化仅限于盒子本身,如果作为场景和其他物体放在一起就不能那么优化画质 即,Cornell box像素计算失败应该返回黑色

【RAY TRACING THE REST OF YOUR LIFE 超详解】 光线追踪 3-5 random direction &amp; ONB

 Preface 往后看了几章,对这本书有了新的理解 上一篇,我们第一次尝试把MC积分运用到了Lambertian材质中,当然,第一次尝试是失败的,作者发现它的渲染效果和现实有些出入,所以结尾处声明要通过实践,改进当前的效果 于是乎,就有了后面的章节,几乎整本书都在讲,如何一步一步地改进上一篇的画质,使其更加符合现实,上一篇其实是抛砖引玉 这本书的小标题名为the rest of your life 通过前面几章,我们可以更好地理解这句话:我们通过MC积分优化效果,采用的是pdf函数,之前说过,

ray tracing/shadow,reflection, caustic

看了一下午终于明白raytracing的算法了 不知道这次能记住多久 ssr我又完全不记得了 按照Henrik所说 理解raytracing的核心在于,它是从Eye到light反着走的 需要一个前序的概念 Light Transport Notation LD?S*E  light source-Diffuse reflection(0 or one)-Specular reflection(0 or more) ---Eye 每个pix有一条经过此pix和eye的唯一ray 沿着这条ray往l

【Ray Tracing in One Weekend 超详解】 光线追踪1-7 Dielectric 半径为负,实心球体镂空技巧

今天讲这本书最后一种材质 Preface 水,玻璃和钻石等透明材料是电介质.当光线照射它们时,它会分裂成反射光线和折射(透射)光线. 处理方案:在反射或折射之间随机选择并且每次交互仅产生一条散射光线 (实施方法:随机取样,具体见后文) 调试最困难的部分是折射光线.如果有折射光线的话,我通常首先让所有的光折射.对于这个项目,我试图在我们的场景中放置两个玻璃球,我得到了这个:   上述图片是对的吗?显然,在实际生活中,那两个玻璃球看起来怪怪的,实际情况下,里面的内容应该将现在的进行上下颠倒,且没有黑

【RAY TRACING THE REST OF YOUR LIFE 超详解】 光线追踪 3-6 直接光源采样

Chapter7 Sample Lights Directly  Preface 今天我们来讲这个还算牛逼的技术——直接光源采样 之前我们提到过,在2-7 前两篇我们也提到要减少噪点,就是图片上的黑点点,所以,所有的矛头都指向了这一篇. 简单说一下为什么会有那么多小点点,就是因为光线路径中没有触碰到光源,路径计算之后就会是黑色的点,可以通过发射大量的光线,比如计算每个像素点的时候发射8k~1w条采样光线进行路径计算:也可以路径计算方面做文章,比如加深路径计算递归深度:等等诸如此类.但是上述方法都