题解:www.cygmasot.com/index.php/2015/08/17/hdu_3970
给定n
求连续整数[0,n), 中任意选一些数使得选出的数和为n的倍数的方法数
。。。并不会如何递推。。
思路:
然后这是公式:点击打开链接
a(n) = 1/n * sum_{d divides n and d is odd} 2^(n/d) * phi(d).
d最大是n,也就是1e9,要计算1e9的phi,所以容斥来算phi.
#pragma comment(linker, "/STACK:1024000000,1024000000") #include <stdio.h> #include <iostream> #include <algorithm> #include <sstream> #include <stdlib.h> #include <string.h> #include <limits.h> #include <vector> #include <string> #include <time.h> #include <math.h> #include <iomanip> #include <queue> #include <stack> #include <set> #include <map> const int inf = 1e9; const double eps = 1e-8; const double pi = acos(-1.0); template <class T> inline bool rd(T &ret) { char c; int sgn; if (c = getchar(), c == EOF) return 0; while (c != '-' && (c<'0' || c>'9')) c = getchar(); sgn = (c == '-') ? -1 : 1; ret = (c == '-') ? 0 : (c - '0'); while (c = getchar(), c >= '0'&&c <= '9') ret = ret * 10 + (c - '0'); ret *= sgn; return 1; } template <class T> inline void pt(T x) { if (x < 0) { putchar('-'); x = -x; } if (x > 9) pt(x / 10); putchar(x % 10 + '0'); } using namespace std; const int N = 1e5 + 10; const int mod = 1e9 + 7; typedef long long ll; typedef pair<int, int> pii; int Pow(int x, int y){//快速幂 int ans = 1; while (y){ if (y & 1)ans = (ll)ans*x%mod; y >>= 1; x = (ll)x*x%mod; } return ans; } int prime[N], primenum;//素数表 void PRIME(int Max_Prime){ primenum = 0; prime[primenum++] = 2; for (int i = 3; i <= Max_Prime; i += 2) for (int j = 0; j<primenum; j++) if (i%prime[j] == 0)break; else if (prime[j]>sqrt((double)i) || j == primenum - 1) { prime[primenum++] = i; break; } } void add(int &x, int y){ x += y; if (x >= mod)x -= mod; }//加法 void go(int x, vector<int>&Pri, vector<int>&Num){//分解质因数 Pri.clear(); Num.clear(); while (!(x & 1))x >>= 1; for (int i = 1; (ll)prime[i] * prime[i] <= x; i++){ if (x%prime[i])continue; Pri.push_back(prime[i]); Num.push_back(0); while (x%prime[i] == 0)x /= prime[i], Num[Num.size() - 1]++; } if (x != 1 && (x&1))Pri.push_back(x), Num.push_back(1); } vector<int>_pri, _num; void cal(int id, int mul, int siz, int sor, int &now){//容斥算欧拉函数 if (id == _pri.size()){ if (mul == 1)return; if (siz & 1)now += sor / mul; else now -= sor / mul; return; } cal(id + 1, mul, siz, sor, now); cal(id + 1, mul*_pri[id], siz + 1, sor, now); } int phi(int x){ if (x == 1)return 1; go(x, _pri, _num); int now = 0; cal(0, 1, 0, x, now); return x - now; } int ans, n; vector<int>pri, num; void dfs(int id, int d){ if (id == pri.size()) { add(ans, (ll)Pow(2, n / d) * phi(d) % mod); return; } for (int i = 0; i <= num[id]; i++){ dfs(id + 1, d); d *= pri[id]; } } int main(){ PRIME(1e5); int T; rd(T); while (T--){ rd(n); go(n, pri, num); ans = 0; dfs(0, 1); pt((ll)ans*Pow(n, mod - 2) % mod); puts(""); } return 0; }
版权声明:本文为博主原创文章,未经博主允许不得转载。
时间: 2024-12-18 02:03:24