最小生成树prim算法实现:
转自:http://www.cnblogs.com/Veegin/archive/2011/04/29/2032388.html
所谓生成树,就是n个点之间连成n-1条边的图形。而最小生成树,就是权值(两点间直线的值)之和的最小值。
首先,要用二维数组记录点和权值。如上图所示无向图:
int map[7][7];
map[1][2]=map[2][1]=4;
map[1][3]=map[3][1]=2;
......
然后再求最小生成树。具体方法是:
1.先选取一个点作起始点,然后选择它邻近的权值最小的点(如果有多个与其相连的相同最小权值的点,随便选取一个)。如1作为起点。
visited[1]=1;
pos=1;
//用low[]数组不断刷新最小权值,low[i](0<i<=点数)的值为:i点到邻近点(未被标记)的最小距离。
low[1]=0; //起始点i到邻近点的最小距离为0
low[2]=map[pos][2]=4;
low[3]=map[pos][3]=2;
low[4]==map[pos][4]=3;
low[5]=map[pos][5]=MaxInt; //无法直达
low[6]=map[pos][6]=MaxInt;
2.再在伸延的点找与它邻近的两者权值最小的点。
//low[]以3作当前位置进行更新
visited[3]=1;
pos=3;
low[1]=0; //已标记,不更新
low[2]=map[1][2]=4; //比5小,不更新
low[3]=2; //已标记,不更新
low[4]=map[1][4]=3; //比1大,更新后为:low[4]=map[3][4]=1;
low[5]=map[1][5]=MaxInt;//无法直达,不更新
low[6]=map[1][6]=MaxInt;//比2大,更新后为:low[6]=map[3][6]=2;
3.如此类推...
当所有点都连同后,结果最生成树如上图所示。
所有权值相加就是最小生成树,其值为2+1+2+4+3=12。
至于具体代码如何实现,现在结合POJ1258例题解释。代码如下:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 |
|