最小生成树(普里姆算法)

最小生成树prim算法实现

转自:http://www.cnblogs.com/Veegin/archive/2011/04/29/2032388.html

所谓生成树,就是n个点之间连成n-1条边的图形。而最小生成树,就是权值(两点间直线的值)之和的最小值。

首先,要用二维数组记录点和权值。如上图所示无向图:

int map[7][7];
       map[1][2]=map[2][1]=4;
       map[1][3]=map[3][1]=2;
       ......

然后再求最小生成树。具体方法是:

1.先选取一个点作起始点,然后选择它邻近的权值最小的点(如果有多个与其相连的相同最小权值的点,随便选取一个)。如1作为起点。

visited[1]=1;

pos=1;

//用low[]数组不断刷新最小权值,low[i](0<i<=点数)的值为:i点到邻近点(未被标记)的最小距离。

low[1]=0;  //起始点i到邻近点的最小距离为0

low[2]=map[pos][2]=4;

low[3]=map[pos][3]=2;

low[4]==map[pos][4]=3;

low[5]=map[pos][5]=MaxInt;  //无法直达

low[6]=map[pos][6]=MaxInt;

2.再在伸延的点找与它邻近的两者权值最小的点。

//low[]以3作当前位置进行更新

visited[3]=1;

pos=3;

low[1]=0;   //已标记,不更新

low[2]=map[1][2]=4;  //比5小,不更新

low[3]=2;  //已标记,不更新

low[4]=map[1][4]=3;   //比1大,更新后为:low[4]=map[3][4]=1;

low[5]=map[1][5]=MaxInt;//无法直达,不更新

low[6]=map[1][6]=MaxInt;//比2大,更新后为:low[6]=map[3][6]=2;

3.如此类推...

当所有点都连同后,结果最生成树如上图所示。

所有权值相加就是最小生成树,其值为2+1+2+4+3=12。

至于具体代码如何实现,现在结合POJ1258例题解释。代码如下:


1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

#include <stdio.h>

#include <string.h>

#define MaxInt 0x3f3f3f3f

#define N 110

//创建map二维数组储存图表,low数组记录每2个点间最小权值,visited数组标记某点是否已访问

int map[N][N],low[N],visited[N];

int n;

int prim()

{

    int i,j,pos,min,result=0;

    memset(visited,0,sizeof(visited));

//从某点开始,分别标记和记录该点

    visited[1]=1;pos=1;

//第一次给low数组赋值

    for(i=1;i<=n;i++)

        if(i!=pos) low[i]=map[pos][i];

//再运行n-1次

    for(i=1;i<n;i++)

    {

//找出最小权值并记录位置

     min=MaxInt;

     for(j=1;j<=n;j++)

         if(visited[j]==0&&min>low[j])

         {

             min=low[j];pos=j;

         }

//最小权值累加

    result+=min;

//标记该点

    visited[pos]=1;

//更新权值

    for(j=1;j<=n;j++)

        if(visited[j]==0&&low[j]>map[pos][j])

            low[j]=map[pos][j];

    }

    return result;

}

int main()

{

    int i,v,j,ans;

    while(scanf("%d",&n)!=EOF)

    {

//所有权值初始化为最大

        memset(map,MaxInt,sizeof(map));

        for(i=1;i<=n;i++)

            for(j=1;j<=n;j++)

            {

                scanf("%d",&v);

                map[i][j]=map[i][j]=v;

            }

            ans=prim();

            printf("%d\n",ans);

    }

    return 0;

}

时间: 2024-10-15 13:57:53

最小生成树(普里姆算法)的相关文章

图-&gt;连通性-&gt;最小生成树(普里姆算法)

文字描述 用连通网来表示n个城市及n个城市间可能设置的通信线路,其中网的顶点表示城市,边表示两城市之间的线路,赋于边的权值表示相应的代价.对于n个定点的连通网可以建立许多不同的生成树,每一棵生成树都可以是一个通信网.现在,我们要选择这样一个生成树,使总的耗费最少.这个问题就是构造连通网的最小代价生成树(Minimum Cost Spanning Tree: 最小生成树)的问题.一棵生成树的代价就是树上各边的代价之和. 有多种算法可以构造最小生成树,其他多数都利用的最小生成的MST(minimum

数据结构之最小生成树(普里姆算法)

1)普里姆算法 可取图中任意一个顶点v作为生成树的根,之后若要往生成树上添加顶点w,则在顶点v和顶点w之间必定存在一条边,并且 该边的权值在所有连通顶点v和w之间的边中取值最小.一般情况下,假设n个顶点分成两个集合:U(包含已落在生成树上 的结点)和V-U(尚未落在生成树上的顶点),则在所有连通U中顶点和V-U中顶点的边中选取权值最小的边. 例如:起始生成树上面就一个顶点.为了连通两个集合,在可选的边中,选择权值最小的.需要辅助数组,V-U中所有顶点. 具体实例如下图所示:求下图的最小生成树 我

数据结构-最小生成树-普里姆算法

转自https://blog.csdn.net/ZGUIZ/article/details/54633115 首先仍然是预定义: 1 #define OK 1 2 #define ERROR 0 3 #define Max_Int 32767 4 #define MVNum 100 5 6 typedef int Status; 7 typedef char VerTexType; 8 typedef int ArcType; 9 10 struct{ 11 VerTexType adjvex;

ACM第四站————最小生成树(普里姆算法)

对于一个带权的无向连通图,其每个生成树所有边上的权值之和可能不同,我们把所有边上权值之和最小的生成树称为图的最小生成树. 普里姆算法是以其中某一顶点为起点,逐步寻找各个顶点上最小权值的边来构建最小生成树. 其中运用到了回溯,贪心的思想. 废话少说吧,这个其实是一个模板,直接套用就好!直接上题吧!这些东西多练就好! 一.最小生成树: 题目描述 求一个连通无向图的最小生成树的代价(图边权值为正整数). 输入 第 一行是一个整数N(1<=N<=20),表示有多少个图需要计算.以下有N个图,第i图的第

数据结构例程——最小生成树的普里姆算法

本文是[数据结构基础系列(7):图]中第11课时[最小生成树的普里姆算法]的例程. (程序中graph.h是图存储结构的"算法库"中的头文件,详情请单击链接-) #include <stdio.h> #include <malloc.h> #include "graph.h" void Prim(MGraph g,int v) { int lowcost[MAXV]; //顶点i是否在U中 int min; int closest[MAXV]

数据结构(五)图---最小生成树(普里姆算法)

一:最小生成树 (一)定义 我们把构造连通网的最小代价生成树称为最小生成树 (二)什么是最小生成树? 1.是一棵树 1)无回路 2)N个顶点,一定有N-1条边 2.是生成树 1)包含全部顶点 2)N-1条边都在图中 3.边的权重和最小 (三)案例说明 在实际生活中,我们常常碰到类似这种一类问题:如果要在n个城市之间建立通信联络网, 则连通n个城市仅仅须要n-1条线路.这时.我们须要考虑这样一个问题.怎样在最节省经费前提 下建立这个通信网.换句话说,我们须要在这n个城市中找出一个包括全部城市的连通

46. 蛤蟆的数据结构笔记之四十六普里姆算法

46. 蛤蟆的数据结构笔记之四十六普里姆算法 本篇名言:"手莫伸 ,伸手必被捉.党与人民在监督 ,万目睽睽难逃脱.汝言惧捉手不伸 ,他道不伸能自觉 , 其实想伸不敢伸 ,人民咫尺手自缩.-- 陈毅" 连通图的生成树是一个极小的连通子图,它含有图中全部的顶点,但只有足以构成一棵树的n-1条边.所谓的最小成本,就是n个顶点,用n-1条边把一个连通图连接起来,并且使得权值的和最小.构造连通网的最小代价生成树,即最小生成树(Minimum Cost Spanning Tree). 找连通图的最

普里姆算法-prim

算法代码: C++ Code 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 /* Prim算法生成最小生成树  */ void MiniSpanTree_Prim(MGraph MG) { int min, i, j, k; int adjvex[MAXVEX];/* 

普里姆算法介绍

普里姆(Prim)算法,和克鲁斯卡尔算法一样,是用来求加权连通图的最小生成树的算法. 基本思想 对于图G而言,V是所有顶点的集合:现在,设置两个新的集合U和T,其中U用于存放G的最小生成树中的顶点,T存放G的最小生成树中的边. 从所有u?U,v?(V-U) (V-U表示出去U的所有顶点)的边中选取权值最小的边(u, v),将顶点v加入集合U中,将边(u, v)加入集合T中,如此不断重复,直到U=V为止,最小生成树构造完毕,这时集合T中包含了最小生成树中的所有边. 普里姆算法图解 以上图G4为例,

普里姆算法,克鲁斯卡尔算法,迪杰斯特拉算法,弗洛里德算法

做数据结构的课程设计顺便总结一下这四大算法,本人小白学生一枚, 如果总结的有什么错误,希望能够告知指正 普里姆算法如图所示prim 找出最短的边,再以这条边构成的整体去寻找与之相邻的边,直至连接所有顶点,生成最小生成树,时间复杂度为O(n2) 克鲁斯卡尔算法如图所示kruskal 克鲁斯卡尔算法,假设连通网N=(N,{E}),则令最小生成树的初始状态为只有n个顶点而无边的非连通图T=(V,{}),图中每个顶点 自成一个连通分量.在E中选择代价最小的边,若该边依附的定顶点落在T中不同的连通分量上,