TEMPO研究第一年影像学数据: 骨侵蚀修复几乎只出现在无关节肿胀或肿胀改善组

标签: TEMPO研究; 依那西普; 放射学进展; 类风湿关节炎

TEMPO研究第一年影像学数据: 骨侵蚀修复几乎只出现在无关节肿胀或肿胀改善组


EULAR2007. Abstract No: OP0011.

D. van der Heijde 1, C. Lukas 1, S. Fatenejad 2, R. Landewe 1.

1Rheumatology, University Hospital, Maastrict, Netherlands, 2Research and Development, Wyeth, Collegeville, United States

背景:双盲试验中vdHSharp评分变化呈负数提示有效的治疗可以修复关节。在单关节水平进行研究能帮助进一步理解关节修复过程。

目的:如果真的存在关节修复(repair),判断修复是否偏好发生于无肿胀或肿胀有改善的关节。

方法:TEMPO试验第1年MTX单用组(M)、Etanercept+MTX组(M+E)患者手/腕和足部摄片后,对所有单关节的判读结 果进行评估。采用vdHSharp评分系统,对治疗和摄片顺序均不知晓的两位读片师各自对所有平片重复判读两次。计算单关节骨侵蚀评分变化,并与单关节肿 胀评分变化相关联。单关节修复的评判:四次判读中至少有一次为负数变化而其它判读变化结果均为零(即无进展)。每关节骨侵蚀变化均数,是通过减去基线均数 而得。

结果:共计11159个单关节中,判读为有修复的为557个,其中553个同时有肿胀评分。下表显示各种肿胀评分变化在"修复关节"组、 "无修复关节"组中的分布。修复组无肿胀关节共计234个,其中12个有残余肿胀,222个无肿胀。肿胀改善即评分变化为负数的关节共计318个,仅36 个有残余肿胀。与无修复相比,修复与肿胀改善显著相关(p<0.0001)。

持续肿胀组骨侵蚀变化均数(95%可信区间)如下,基线无破坏组为0.03 [0.01,0.04],基线有破坏组为0.06 [–0.02,0.14]),而无肿胀或肿胀改善组患者的更低,基线无破坏组为0.01[0.00,0.01],基线有破坏组为-0.09[-0.11,-0.06]。基线有骨侵蚀时,骨侵蚀变化均数只在无肿胀或肿胀改善亚组呈显著负数变化。

结论:骨侵蚀修复几乎只出现在肿胀改善或肿胀消失组。持续肿胀关节中的骨破坏仍在进展,尤其是基线已有骨损害者。这项观察研究进一步确证了骨侵蚀负数变化是骨修复的反映。


表.  治疗1年后修复组和无修复组的肿胀变化关节数和百分比


肿胀评分变化


-3


-2


-1


0


1


2


Total


修复组


14


95


209


234


1


0


553


(2.5%)


(17.2%)


(37.8%)


(42.3%)


(0.2%)


(0%)


(100%)


无修复组


157


943


3124


6135


129


9


10497


(1.5%)


(9.0%)


(29.8)


(58.4)


(1.2%)


(0.1%)


(100%)


请点击链接查看英文原文或参考以下文字。

[2007] [OP0011] REPAIR OF EROSIONS OCCURS ALMOST EXCLUSIVELY IN DAMAGED JOINTS WITHOUT SWELLING: POST HOC ANALYSIS OF RADIOGRAPHIC DATA FROM YEAR 1 OF THE TEMPO STUDY

D. van der Heijde 1, C. Lukas 1, S. Fatenejad 2, R. Landewe 1

1Rheumatology, University Hospital, Maastrict, Netherlands, 2Research and Development, Wyeth, Collegeville, United States


Background: Negative van der Heijde-Sharp (SvdH) change scores obtained under blinded time-sequence conditions suggest that effective therapies may result in joint repair. Investigation at the single-joint level could provide further understanding of the repair process.

Objectives: To determine whether repair – if it truly exists – preferentially occurs in joints with no swelling or improvement in swelling.

Methods: Single-joint readings of radiographic images of the hands/wrists and feet from patients in year 1 of the TEMPO trial (the methotrexate-only group [M] and the methotrexate+etanercept group [M+E]) were evaluated. Using the SvdH scoring, 2 readers blinded to treatment and true-time sequence independently assessed each of the radiographs twice. Single-joint change scores in erosions were calculated and coupled with change in single-joint swelling scores. Repair in a joint was considered to have occurred if there was a negative erosion change score in at least 1 of the 4 potential readings with the remaining readings showing zero, ie, no progression. Mean erosion change scores per joint were calculated by taking the mean score from the first reading by each reader.

Results: Of the 11,159 single joints, 557 showed repair. For 553 of these, swelling scores were also available. The table shows the distribution of change in swelling in joints showing "repair" versus "no repair". Of the 234 joints without change in swelling in the repair group, 12 had residual swelling and 222 had no swelling. Of the 318 joints with improvement in swelling (ie negative change), only 36 had residual swelling. Repair was significantly more associated with improvement in swelling than no repair (p<0.0001).

Mean change in erosion scores (95% confidence interval [CI]) were lower in patients with no swelling or improvement in swelling (group without baseline damage 0.01 [0.00, 0.01]; group with baseline damage –0.09 [–0.11; -0.06]) compared with patients with persistent swelling (group without baseline damage 0.03 [0.01, 0.04]; group with baseline damage 0.06 [–0.02, 0.14]). The mean change in erosion score was statistically significantly negative only in the subgroup of joints with absent or improving swelling, while erosions were present at baseline.

Conclusion: Repair of erosions occurs almost exclusively in damaged joints that show either improvement of swelling, or that have no swelling at all. Progression occurs in joints with persistent swelling, preferably if there is already damage present. This observation adds to the validity that negative joint scores are a reflection of repair.


Number and percentage of joints with repair or no-repair vs. 1-year change in swelling


 


-3


-2


-1


0


1


2


Total


Repair


14


95


209


234


1


0


553


(2.5%)


(17.2%)


(37.8%)


(42.3%)


(0.2%)


(0%)


(100%)


No Repair


157


943


3124


6135


129


9


10497


(1.5%)


(9.0%)


(29.8)


(58.4)


(1.2%)


(0.1%)


(100%)


Citation: Ann Rheum Dis 2007;66(Suppl II):54

时间: 2024-10-12 08:29:32

TEMPO研究第一年影像学数据: 骨侵蚀修复几乎只出现在无关节肿胀或肿胀改善组的相关文章

ComplexBrowser: a tool for identification and quantification of protein complexes in large-scale proteomics datasets(大规模蛋白组学数据集中鉴定和定量蛋白复合物)

文献名:ComplexBrowser: a tool for identification and quantification of protein complexes in large-scale proteomics datasets(大规模蛋白组学数据集中鉴定和定量蛋白复合物) 期刊名:Mol Cell Proteomics 发表时间:(2019年11月) IF:4.828 单位:南丹麦大学生物化学与分子生物学系和VILLUM生物分析科学中心 物种:人和小鼠 技术:ComplexBrow

[分析]研究人员重置交通卡数据搭乘免费火车之重置攻击

经过9个小时的休整我又踏上了飞往福州的路上,经过四天的休息并且远离网络的日子,我终于回到家了!昨天在史上最强安全资讯网站看到<研究人员重置交通卡数据搭乘免费火车>的新闻.而当中的某些内容有所偏差,所以就冲动地写下了这一篇小小的文章. 研究人员利用基于NFC的城铁交通卡的漏洞,开发出一个Android应用程序,可以让持卡者免费搭乘城铁. 首先,大家知道什么是NFC吗? NFC是Near Field Communication缩写,即近距离无线通讯技术. 由飞利浦公司和索尼公司共同开发的NFC是一

L10 数据入站、转发、出站流程

二 写出防火墙规则链之间的顺序也就是入站数据流向.转发数据流向.出站数据流向的过程 入站:PREROUTING→INPUT 数据包到达防火墙,由prerouting处理,判断是否修改地址 路由选择:判断是要到另一个网段,还是要访问本机 如果本机,就传递到INPUT规则链,如果INPUT允许通过,则将数据包传给本机的应用程序出站:OUTPUT→POSTROUTING 数据要出去,经过OUTPUT规则链进行处理,如果允许出去,则需要POSTROUTING规则链进行判断地址是否需要修改,本机数据就可以

10 天 100 小时学数据科学

#转自wx公众号:Python开发者 #问题/答案来源:Quora 英文:Roman Trusov 译文:伯乐在线专栏作者 - XiaoxiaoLi 链接:http://python.jobbole.com/85704/ [伯乐在线导读]:有位网友在 Quora 提问,并补充说「我有10天空闲时间,每天想花十个小时学习数据科学入门知识,应该学点什么呢?谢谢」伯乐在线摘编了 Roman Trusov 的回复,非常值得新手参考. 哥们我太羡慕你了,不是谁都有像你这样的机会的. 10天100小时的学习

linq中分组查询而且获取每个分组中的第一条记录,数据用于分页绑定

LINQ分组取出第一条数据 Person1: Id=1, Name="Test1" Person2: Id=1, Name="Test1" Person3: Id=2, Name="Test2" 以上list如果直接使用distinct方法进行过滤,仍然返回3条数据,而需要的结果是2条数据.下面给出解这个问题的方法: 方法1: Distinct 方法中使用的相等比较器.这个比较器需要重写Equals和GetHashCode方法,个人不推荐,感觉较

第一个小工具——数据查询统计

from PyQt5 import QtCore, QtWidgets import sys import pymysql import dp_copy.rczy_sql as rczysql import dp_copy.wccyr_sql as wccyrsql class Ui_ANOVAWindow(object): def setupUi(self, ANOVAWindow): ANOVAWindow.setObjectName("ANOVAWindow") ANOVAWin

Redis研究(十二)—数据复制

在上一节中我们写了Redis的数据持久化 http://blog.csdn.net/wtyvhreal/article/details/42916503 通过持久化功能,Redis保证了即使在服务器重启的情况下也不会损失(或少量损失)数据.但是由于数据是存储在一台服务器上的,如果这台服务器的硬盘出现故障,也会导致数据丢失.为了避免单点故障,我们希望将数据库复制多个副本以部署在不同的服务器上,即使有一台服务器出现故障其他服务器依然可以继续提供服务.这就要求当一台服务器上的数据库更新后,可以自动将更

学数据机构干什么?

我们为什么还要学习数据结构呢?学习什么链表,插入删除数据,看代码,觉得很复杂.这是干什么用的呢?C或C++里不就已经可以插入数据,存储数据么?建个数组,运用指针不就可以很方便么?还要费这劳什子自己写一大串代码就是为了建个链表能存两个数据? 回答一: 链表的好处在于不用使用连续的内存,而是利用内存中分散的存储单元存储数据:而且链表的长度是可以任意增删的,但数组一旦申请就不能改变,这根本不能满足数据的动态存储:再加上数组的删除和插入元素会使大片的数据进行移动,这就增加了运算量: 数据结构的思想还是很

第一篇:查阅数据

前言 本文讲解如何使用 R 语言对数据集进行总体上的了解. 在进行数据挖掘之前,我们有必要对挖掘的数据集对象有一个总体的了解.本文采用具体实例讲解的方式,详细演示对一个数据集的分析过程. Step 1:载入数据集 命令data("数据集名")可载入指定数据集. Step 2:查看行列名 命令attributes("数据集")可打印出数据集的行/列名.本例中,bmi和chl是numeric类型,而另外两个变量是factor类型. Step 3:查看特征类型信息 命令s