UVA11324 强连通+dp记忆化搜索

题意:对于一个有向图,问最大团中有多少点,要求该点集内所有点对间至少有一条路径(u到v或v到u或两条都有)。

首先,对于每一个强连通分量,其中的所有点必然能够互相到达,所以先进行缩点,然后对于缩点后的 DAG,dp[i] 表示从 i 强连通分量开始能够到达的最多的点数,那么在缩点时需要记录一下每个强连通分量的点数。然后进行DP,初始值定为该强连通分量的点数,然后用它能到达的点来更新它本身。取最大值就行了。

 1 #include<stdio.h>
 2 #include<string.h>
 3 #include<stack>
 4 #include<queue>
 5 using namespace std;
 6
 7 const int maxn=1005;
 8 const int maxm=50005;
 9
10 int head[2][maxn],point[2][maxm],nxt[2][maxm],size[2];
11 int n,t,scccnt;
12 int stx[maxn],low[maxn],scc[maxn],num[maxn],dp[maxn];
13 stack<int>S;
14
15 void init(){
16     memset(head,-1,sizeof(head));
17     size[0]=size[1]=0;
18     memset(dp,0,sizeof(dp));
19 }
20
21 void add(int a,int b,int c=0){
22     point[c][size[c]]=b;
23     nxt[c][size[c]]=head[c][a];
24     head[c][a]=size[c]++;
25 }
26
27 void dfs(int s){
28     stx[s]=low[s]=++t;
29     S.push(s);
30     for(int i=head[0][s];~i;i=nxt[0][i]){
31         int j=point[0][i];
32         if(!stx[j]){
33             dfs(j);
34             low[s]=min(low[s],low[j]);
35         }
36         else if(!scc[j]){
37             low[s]=min(low[s],stx[j]);
38         }
39     }
40     if(low[s]==stx[s]){
41         scccnt++;
42         while(1){
43             int u=S.top();S.pop();
44             scc[u]=scccnt;
45             num[scccnt]++;
46             if(s==u)break;
47         }
48     }
49 }
50
51 void setscc(){
52     memset(stx,0,sizeof(stx));
53     memset(scc,0,sizeof(scc));
54     memset(num,0,sizeof(num));
55     t=scccnt=0;
56     for(int i=1;i<=n;++i)if(!stx[i])dfs(i);
57     for(int i=1;i<=n;++i){
58         for(int j=head[0][i];~j;j=nxt[0][j]){
59             int k=point[0][j];
60             if(scc[i]!=scc[k]){
61                 add(scc[i],scc[k],1);
62             }
63         }
64     }
65 }
66
67 void dfs1(int s){
68     if(dp[s])return;
69     dp[s]=num[s];
70     for(int i=head[1][s];~i;i=nxt[1][i]){
71         int j=point[1][i];
72         dfs(j);
73         if(num[s]+dp[j]>dp[s])dp[s]=num[s]+dp[j];
74     }
75 }
76
77 int main(){
78     int T;
79     scanf("%d",&T);
80     while(T--){
81         int m;
82         scanf("%d%d",&n,&m);
83         init();
84         while(m--){
85             int a,b;
86             scanf("%d%d",&a,&b);
87             add(a,b);
88         }
89         setscc();
90         int ans=0;
91         for(int i=1;i<=scccnt;++i){
92             dfs1(i);
93             if(ans<dp[i])ans=dp[i];
94         }
95         printf("%d\n",ans);
96     }
97     return 0;
98 }

时间: 2024-12-06 17:55:38

UVA11324 强连通+dp记忆化搜索的相关文章

11782 - Optimal Cut(树形DP+记忆化搜索)

题目链接:11782 - Optimal Cut 题意:按前序遍历给定一棵满二叉树,现在有k次,可以选k个节点,获得他们的权值,有两个条件: 1.一个节点被选了,他的子节点就不能选了. 2.最终选完后,根到所有叶子的路径上,都要有一个被选的节点. 思路:树形dp,dp[u][k]代表在结点u,可以选k个节点,那么就分两种情况 选u节点,dp[u][k] = node[u]; 选子节点之和,那么就把k次分配给左右孩子,dp[u][k] = max(dp[u][k], dp[u][i], dp[u]

[hihocoder 1033]交错和 数位dp/记忆化搜索

#1033 : 交错和 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 给定一个数 x,设它十进制展从高位到低位上的数位依次是 a0,?a1,?...,?an?-?1,定义交错和函数: f(x)?=?a0?-?a1?+?a2?-?...?+?(?-?1)n?-?1an?-?1 例如: f(3214567)?=?3?-?2?+?1?-?4?+?5?-?6?+?7?=?4 给定 输入 输入数据仅一行包含三个整数,l,?r,?k(0?≤?l?≤?r?≤?1018,?|k|

UVA - 10817 Headmaster&#39;s Headache (状压dp+记忆化搜索)

题意:有M个已聘教师,N个候选老师,S个科目,已知每个老师的雇佣费和可教科目,已聘老师必须雇佣,要求每个科目至少两个老师教的情况下,最少的雇佣费用. 分析: 1.为让雇佣费尽可能少,雇佣的老师应教他所能教的所有科目. 2.已聘老师必须选,候选老师可选可不选. 3.dfs(cur, subject1, subject2)---求出在当前已选cur个老师,有一个老师教的科目状态为 subject1,有两个及以上老师教的科目状态为 subject2的情况下,最少的雇佣费用. dp[cur][subje

UVa 10817 (状压DP + 记忆化搜索) Headmaster&#39;s Headache

题意: 一共有s(s ≤ 8)门课程,有m个在职教师,n个求职教师. 每个教师有各自的工资要求,还有他能教授的课程,可以是一门或者多门. 要求在职教师不能辞退,问如何录用应聘者,才能使得每门课只少有两个老师教而且使得总工资最少. 分析: 因为s很小,所以可以用状态压缩. dp(i, s1, s2)表示考虑了前i个人,有一个人教的课程的集合为s1,至少有两个人教的集合为s2. 在递归的过程中,还有个参数s0,表示还没有人教的科目的集合. 其中m0, m1, s0, s1, s2的计算用到位运算,还

poj1664 dp记忆化搜索

http://poj.org/problem?id=1664 Description 把M个同样的苹果放在N个同样的盘子里,允许有的盘子空着不放,问共有多少种不同的分法?(用K表示)5,1,1和1,5,1 是同一种分法. Input 第一行是测试数据的数目t(0 <= t <= 20).以下每行均包含二个整数M和N,以空格分开.1<=M,N<=10. Output 对输入的每组数据M和N,用一行输出相应的K. Sample Input 1 7 3 Sample Output 8 /

【DP】树形DP 记忆化搜索

DP中的树形DP,解决方法往往是记忆化搜索.显然,树上递推是很困难的.当然做得时候还是得把状态定义和转移方程写出来:dp[u][1/0]表示以u为根节点的树 涂(1) 或 不涂(0) 颜色的最少方案数.树上DP有两个经典问法:一条边两端至少有个一个端点涂色,问整个tree最少涂色次数:还有一种忘了...此题是前种问法. #include<cstdio> #include<cstring> #include<algorithm> using namespace std;

POJ 4968 DP||记忆化搜索

给出N个人的平局分X 根据GPA规则计算可能的最高平均GPA和最低平均GPA 可以DP预处理出来所有结果  或者记忆化搜索 DP: #include "stdio.h" #include "string.h" int inf=100000000; double a[11][1100],b[11][1100]; double Max(double a,double b) { if (a<b) return b; else return a; } double M

状压DP+记忆化搜索 UVA 1252 Twenty Questions

题目传送门 1 /* 2 题意:给出一系列的01字符串,问最少要问几个问题(列)能把它们区分出来 3 状态DP+记忆化搜索:dp[s1][s2]表示问题集合为s1.答案对错集合为s2时,还要问几次才能区分出来 4 若和答案(自己拟定)相差小于等于1时,证说明已经能区分了,回溯.否则还要加问题再询问 5 */ 6 /************************************************ 7 * Author :Running_Time 8 * Created Time :

poj 1651 dp 记忆化搜索

题意: 给出n个整数a1,a2,-,an,要求从中取出中间的n-2个数(两端的数不能取),取出每个数的代价为它两边的数和它的乘积,问取出这n-2个数的最小代价为多少? 限制: 3 <= n <= 100; 1 <= ai <= 100 思路: dp 记忆化搜索 对于每个过程其实就是,枚举最后取的数a[i],然后把区间[l,r]分割成[l,i]和[i,r]两部分. dp[l][r]=min(gao(l,i)+a[left]*a[i]*a[right]+gao(i,r))