大数据处理时的一种BitMap小算法

一种大数据外部排序(内存无法加载所有排序元素)、去除重复元素、快速找到随机被删除元素的BitMap小算法,核心思想即通过将一个数作为下标(index)来索引一个bit表示一个数是否存在,排序时的时间复杂度为O(N),需要的额外空间的复杂度O(N/8),支持整个int范围(正负数都支持)的算法示例如下:


char BitMask[] = {0x80 , 0x40 , 0x20 , 0x10 , 0x8 , 0x4 , 0x2 , 0x1};

int WriteNumberBitToByte(char *ByteArra , unsigned int ByteArraSize , int Number)
{
	//printf("%d,%d,%d\n",(ByteArraSize * 4) - 1,-(ByteArraSize*4),Number);

	if (((int)(ByteArraSize * 4) - 1) < Number || Number<-(int)(ByteArraSize*4) )
	{
		return 0;	//failed,number out of bytearra.
	}

	int BaseArraBitPos = ByteArraSize *4;	//ByteArraSize *8 /2

	BaseArraBitPos+=Number;

	printf("BaseArraBitPos=%d,Number=%d\n",BaseArraBitPos,Number);
	ByteArra[BaseArraBitPos/8] |= Mask[BaseArraBitPos%8];

	return 1;	//success
}

int IsNumberBitInByte(char *ByteArra , unsigned int ByteArraSize , int Number)
{
	if (((int)(ByteArraSize * 4) - 1) < Number || Number<-(int)(ByteArraSize*4) )
	{
		return 0;	//failed,number out of bytearra.
	}

	int BaseArraBitPos = ByteArraSize *4;	//ByteArraSize *8 /2

	BaseArraBitPos+=Number;

	if (ByteArra[BaseArraBitPos/8] & BitMask[BaseArraBitPos%8]) {
		return 1;
	}

	return 0;	//number not found.
}

void PrintOrderedBitMap(char *BitMap,unsigned int BitMapCount)
{
	int MinmumNumber = -(BitMapCount*8/2);
	int MaximumValue = (BitMapCount*8/2)-1;

	for (int i = MinmumNumber; i <= MaximumValue; ++i)
	{
		if (IsNumberBitInByte(BitMap,BitMapCount,i))
		{
			printf("%d,", i);
		}
	}

	printf("\n");
}

int main()
{
	int Arra[] = {3,-4,2,0,-1,-8,7,-12,10};

	int MaximumValue =Arra[0],MinmumValue=Arra[0];
	for (int i = 0; i < sizeof(Arra)/sizeof(Arra[0]); ++i)
	{
		if(MaximumValue<Arra[i]) {
			MaximumValue = Arra[i];
		}
		if (MinmumValue>Arra[i])
		{
			MinmumValue = Arra[i];
		}
	}

	MaximumValue=MaximumValue<0?-MaximumValue:MaximumValue;
	MinmumValue=MinmumValue<0?-MinmumValue:MinmumValue;

	MaximumValue=MaximumValue>MinmumValue?MaximumValue:MinmumValue;

	printf("MaximumValue=%d\n",MaximumValue);
	//unsigned int BitMapCount = (MaximumValue*2+7)/8;
	unsigned int BitMapCount = (MaximumValue+3)/4;
	BitMapCount = BitMapCount>0?BitMapCount:1;
	char *BitMap = (char*)malloc(BitMapCount);

	for (int i = 0; i < sizeof(Arra)/sizeof(Arra[0]); ++i)
	{
		WriteNumberBitToByte(BitMap,BitMapCount,Arra[i]);
	}

	PrintOrderedBitMap(BitMap,BitMapCount);
}

仅支持unsigned int范围的算法示例如下:

char BitMask[] = {0x80 , 0x40 , 0x20 , 0x10 , 0x8 , 0x4 , 0x2 , 0x1};

int WriteNumberBitToByte(char *ByteArra , unsigned int ByteArraSize , unsigned int Number)
{
	if (((ByteArraSize * 8) - 1) < Number )
	{
		return 0;	//failed,number out of bytearra.
	}

	int BytePos = Number / 8;
	int BitPos = Number % 8;

	ByteArra[BytePos] |= BitMask[BitPos];

	return 1;	//success
}

int IsNumberBitInByte(char *ByteArra , unsigned int ByteArraSize , unsigned int Number)
{
	if ((ByteArraSize * 8 - 1) < Number )
	{
		return 0;	//failed,number out of bytearra.
	}

	int BytePos = Number / 8;
	int BitPos = Number % 8;

	if (ByteArra[BytePos] & BitMask[BitPos]) {
		return 1;
	}

	return 0;	//number not found.
}

上面的算法都是用一个bit来表示一个数,即只有2种可能,要么有,要么无,可以扩展到一个字节表示一个数,这样就可以统计出现255次范围内的重复元素,原理以此类推。


另外用bit来表示一个int数,节约了31倍的内存空间,即int(4*8),bit(8/1),所以数据量越来使用这种方式的优势越明显,前提是场景适用这种方式。

版权声明:本文为博主原创文章,未经博主允许不得转载。

时间: 2024-10-29 19:07:14

大数据处理时的一种BitMap小算法的相关文章

大数据处理时用到maven的repository

由于做数据处理时,经常遇到maven 下载依赖包错误,下面我将自己下载好的repository 分享下 里边包含:Hadoop ,storm ,sprk ,kafka ,等 压缩后500多M. http://pan.baidu.com/s/1pJN2ScV 如有问题请联系: [email protected]

5种必知的大数据处理框架技术

大数据是收集.整理.处理大容量数据集,并从中获得见解所需的非传统战略和技术的总称.虽然处理数据所需的计算能力或存储容量早已超过一台计算机的上限,但这种计算类型的普遍性.规模,以及价值在最近几年才经历了大规模扩展. 本文将介绍大数据系统一个最基本的组件:处理框架.处理框架负责对系统中的数据进行计算,例如处理从非易失存储中读取的数据,或处理刚刚摄入到系统中的数据.数据的计算则是指从大量单一数据点中提取信息和见解的过程. 下文将介绍这些框架: · 仅批处理框架: Apache Hadoop · 仅流处

大数据处理算法一:Bitmap算法

腾讯面试题:给20亿个不重复的unsigned int的整数,没排过序的,然后再给一个数,如何快速判断这个数是否在那40亿个数当中并且所耗内存尽可能的少? 解析:bitmap算法就好办多了 所谓bitmap,就是用每一位来存放某种状态,适用于大规模数据,但数据状态又不是很多的情况.通常是用来判断某个数据存不存在的. 例如,要判断一千万个人的状态,每个人只有两种状态:男人,女人,可以用0,1表示.那么就可以开一个int数组,一个int有32个位,就可以表示32个人.操作的时候可以使用位操作. 一,

下一代大数据处理引擎,阿里云实时计算独享模式重磅发布

摘要: 11月14日,阿里云重磅发布了实时计算独享模式,即用户独享一部分物理资源,这部分资源在网络/磁盘/CPU/内存等资源上跟其他用户完全独立,是实时计算在原有共享模式基础上的重大升级.(观看实时计算发布会直播:https://yq.aliyun.com/live/591) 独享模式优点更加突出1.UDX开放:实时计算的共享模式是多个用户共享一个物理机群,在网络/磁盘层面没有办法做到完全隔离. 11月14日,阿里云重磅发布了实时计算独享模式,即用户独享一部分物理资源,这部分资源在网络/磁盘/C

位图与布隆及大数据处理题型分析

1.位图 由题引入: [腾讯]:2.给40亿个不重复的无符号整数,没排过序.给一个无符号整数,如何快速判断一个数是否在这40亿个数中. 如果将40亿个数按整型放入内存,显然不科学,就算内存足够,这样做也是浪费空间. 解决思路:用一个比特位表示一个数,存在的话该位上就置为1,不在的话置为0:这样40亿个数需要40亿个比特位,换算一下也就是500M,相对于16G来说,大大节省了空间. 注意:位图只适合判断,查找数据是否存在,且只能对整数进行处理. 代码如下: 1 class BitMap 2 { 3

C++大数据处理

转:http://blog.csdn.net/v_july_v/article/details/7382693 作者:July出处:结构之法算法之道blog 前言 一般而言,标题含有“秒杀”,“99%”,“史上最全/最强”等词汇的往往都脱不了哗众取宠之嫌,但进一步来讲,如果读者读罢此文,却无任何收获,那么,我也甘愿背负这样的罪名,:-),同时,此文可以看做是对这篇文章:十道海量数据处理面试题与十个方法大总结的一般抽象性总结. 毕竟受文章和理论之限,本文将摒弃绝大部分的细节,只谈方法/模式论,且注

企业级大数据处理方案-02.环境决定需求、性能决定选型

上讲,讲述了大概九种的技术种类以及他们的领域.那么既然有吃饭的,那就必须有做饭的.因此大数据技术结构的选型,必须有的组成部分至少三种(来源.计算.存储) 最简单的数据处理架构: 最少单元的数据处理方案,当然这个不是最好的,为什么呢,问题: 1.流式处理数据(Streaming)时,数据量小时,数据存储到HDFS中,20M或者100K,这种情况是有的.这种计算结果的存储极大浪费了存储空间.HDFS不适用于大批量小文件的存储,(只是不适用,不是不能) 2.数据量大时,数据处理不过来(receiver

翻译-In-Stream Big Data Processing 流式大数据处理

相当长一段时间以来,大数据社区已经普遍认识到了批量数据处理的不足.很多应用都对实时查询和流式处理产生了迫切需求.最近几年,在这个理念的推动下,催生出了一系列解决方案,Twitter Storm,Yahoo S4,Cloudera Impala,Apache Spark和Apache Tez纷纷加入大数据和NoSQL阵营.本文尝试探讨流式处理系统用到的技术,分析它们与大规模批量处理和OLTP/OLAP数据库的关系,并探索一个统一的查询引擎如何才能同时支持流式.批量和OLAP处理. 在Grid Dy

大数据处理及其研究进展

一. 大数据基本概念 大数据Big Data是指大小超出了经常使用的软件工具在执行时间内能够承受的收集,管理和处理数据能力的数据集;大数据是眼下存储模式与能力.计算模式与能力不能满足存储与处理现有数据集规模产生的相对概念. 大数据的预处理 主要完毕对已接收数据的辨析.抽取.清洗等操作. (1)抽取:因获取的数据可能具有多种结构和类型,数据抽取过程能够帮助我们将这些复杂的数据转化为单一的或者便于处理的构型,以达到高速分析处理的目的. (2)清洗:对于大数据,并不全是有价值的,有些数据并非我们所关心