先序序列和后序序列并不能唯一确定二叉树

数据结构的基础知识中重要的一点就是能否根据两种不同遍历序列的组合(有三种:先序+中序,先序+后序,中序+后序),唯一的确定一棵二叉树。然后就是根据二叉树的不同遍历序列(先序、中序、后序),重构二叉树。显然,这三种组合并不是都能唯一确定二叉树的,其中先序+后序就不能唯一确定一棵二叉树,其他两种组合可以唯一的确定一颗二叉树。
由先序序列和后序序列不能唯一确定一棵二叉树,因无法确定左右子树两部分。
反例:任何结点只有左子树的二叉树和任何结点只有右子树的二叉树,其前序序列相同,后序序列相同,但却是两棵不同的二叉树。

这两棵二叉树的先序遍历序列都为2-1-3,后序遍历序列都为3-1-2。但是显然它们是不同的二叉树,所以根据先序序列和后序序列并不能唯一确定二叉树。
时间: 2024-10-04 01:11:19

先序序列和后序序列并不能唯一确定二叉树的相关文章

经典白话算法之二叉树中序前序序列(或后序)求解树

这种题一般有二种形式,共同点是都已知中序序列.如果没有中序序列,是无法唯一确定一棵树的. <1>已知二叉树的前序序列和中序序列,求解树. 1.确定树的根节点.树根是当前树中所有元素在前序遍历中最先出现的元素. 2.求解树的子树.找出根节点在中序遍历中的位置,根左边的所有元素就是左子树,根右边的所有元素就是右子树.若根节点左边或右边为空,则该方向子树为空:若根节点 边和右边都为空,则根节点已经为叶子节点. 3.递归求解树.将左子树和右子树分别看成一棵二叉树,重复1.2.3步,直到所有的节点完成定

二叉树系列(二):已知中序遍历序列和后序遍历序列,求先序遍历序列

前面已经介绍过三种遍历方法的规则,为了大家看着方便,这里我们在重新介绍一遍: 1.先序遍历 (1)访问根结点: (2)先序遍历左子树: (3)先序遍历右子树.  2.中序遍历 (1)中序遍历左子树: (2)访问根结点: (3)中序遍历右子树. 3.后序遍历 (1)后序遍历左子树: (2)后序遍历右子树: (3)访问根结点. 知道了二叉树的三种遍历规则,只要有中序遍历序列和前后任一种遍历序列,我们就可以求出第三种遍历序列,今天我们研究的是已知中序和后序遍历序列,求先序遍历序列. 已知该二叉树的中序

算法进化历程之“根据二叉树的先序和中序序列输出后序序列”

巧若拙(欢迎转载,但请注明出处:http://blog.csdn.net/qiaoruozhuo) 前不久在看到一个作业"根据二叉树的先序和中序序列输出后序序列",当时我参考<数据结构与算法(C语言)习题集>上的做法,先根据先中序序列确定一颗二叉树,然后后序遍历二叉树输出后序序列. 函数采用了递归算法,利用函数传入的先序和中序序列的左右边界,确定要处理的序列段,生成相应的二叉树. 基本思路是,把该段先序序列的第一个元素作为当前二叉树的根结点,然后在中序序列找到根结点.根结点

通过二叉树的中序序列和后序序列获取前序序列

二叉树的遍历方式常见的三种是:先序遍历(ABC).中序遍历(BAC).后序遍历(BCA) 先序遍历: 若二叉树为空,则空操作:否则: 访问根结点; 先序遍历左子树: 先序遍历右子树. 中序遍历: 若二叉树为空,则空操作:否则: 中序遍历左子树: 访问根结点: 中序遍历右子树. 后序遍历: 若二叉树为空,则空操作:否则: 后序遍历左子树: 后序遍历右子树: 访问根结点. 在学习到 根据遍历序列确定二叉树 时,知道了:可以通过二叉树的先中或者中后遍历序列唯一确定一棵二叉树. 根据算法描述 使用jav

根据前序和中序遍历求后序 /后序和中序求前序

给出一二叉树的前序遍历的顺序和中序遍历的顺序我们可以由此得出后序遍历的顺序,根据它们的访问顺序,前序遍历的第一个结点肯定是根结点,与之对应在中序遍历找到对应的根结点的位置,那么在中序遍历中,根结点的左边的元素都属于左子树的元素,根结点右边的元素都属于右子树的元素,之后把左子树当成一个继续操作,就这样可以推出整个树,继而求出后序遍历: #include<iostream> #include<cstdlib> #include<cstring> #include<cs

已知二叉树的中序遍历和先序/后序遍历求后序/先序

已知两种遍历序列求原始二叉树 算法思想: 需要明确的前提条件 通过先序和中序可以求出原始二叉树 通过中序和后序可以求出原始二叉树 但是通过先序和后序无法还原出二叉树 换种说法: 只有通过先序中序或者后序中序才可以确定一个二叉树 先来看一个例子,已知先序遍历序列和中序遍历序列求后序遍历: 先序:ABCDEFGH 中序:BDCEAFHG 求后序: 分析:要求后序遍历序列,必须求出原始二叉树 先看先序序列A第一个出现,有先序遍历的定义可以知道A是根结点 再看中序遍历,A的左边是BDCE,而A的右边是F

二叉树(15)----由中序遍历和后序遍历重建二叉树,递归方式

1.二叉树定义 typedef struct BTreeNodeElement_t_ { void *data; } BTreeNodeElement_t; typedef struct BTreeNode_t_ { BTreeNodeElement_t *m_pElemt; struct BTreeNode_t_ *m_pLeft; struct BTreeNode_t_ *m_pRight; } BTreeNode_t; 2.由中序遍历和后序遍历重建二叉树 中序遍历中,根节点总是位于左右子树

二叉树——前序遍历、中序遍历、后序遍历、层序遍历详解(递归非递归)

前言 前面介绍了二叉排序树的构造和基本方法的实现.但是排序遍历也是比较重要的一环.所以笔者将前中后序.和层序遍历梳理一遍. 了解树的遍历,需要具有的只是储备有队列,递归,和栈.这里笔者都有进行过详细介绍,可以关注笔者数据结构与算法专栏.持续分享,共同学习. 层序遍历 层序遍历.听名字也知道是按层遍历.我们知道一个节点有左右节点.而每一层一层的遍历都和左右节点有着很大的关系.也就是我们选用的数据结构不能一股脑的往一个方向钻,而左右应该均衡考虑.这样我们就选用队列来实现. 对于队列,现进先出.从根节

算法学习 - 表达树的建立(后缀表达式法),树的先序遍历,中序遍历,后序遍历

表达树就是根据后缀表达式来建立一个二叉树. 这个二叉树的每个叶子节点就是数,真祖先都是操作符. 通过栈来建立的,所以这里也会有很多栈的操作. 树的先序遍历,中序遍历,后序遍历的概念我就不讲了,不会的自行百度,不然也看不懂我的代码. 下面是代码: // // main.cpp // expressionTree // // Created by Alps on 14-7-29. // Copyright (c) 2014年 chen. All rights reserved. // #includ