基于“局部标准差”的图像增强(原理、算法、代码)
一、理论
图像增强算法的基本原则是“降低低频区域,突出高频区域”,以此强化边缘,达到增强的目的。最简单的例子就是通过原始图像减去高斯模糊处理后的图像,就能够将边缘强化出来。
直方图均衡化也是一种非常常见的增强方法。但是为了避免背景的干扰,更倾向于采用“局部”方法进行处理。我们这里着重研究自适应对比度增强(ACE)的相关内容。
ACE的定义和原理(TODO)
ACE算法的相关内容:
计算低频成分:
对于具体的像素,一般可以通过计算以该像素为中心的局部区域的像素平均值来实现。
而局部方差为:
则ACE算法可以表示为:
看上去还是比较简单的。这里的和都可以根据图像本身计算出来。而则需要单独计算。
可以为单独的常量,或者通过来代替。这里的D是一个全局的值,比如平均值。
二、实现
涉及到局部的运算,自然而然会想到使用卷积的方法。更好的是Opencv提供了专门的函数用来做这个工作—BLUR
文档中写到:
那么正是我们想要的结果。
//ace 自适应对比度均衡研究
//by jsxyhelu
//感谢 imageshop
#include "stdafx.h"
#include <iostream>
#include "opencv2/core/core.hpp"
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp"
using namespace std;
using namespace cv;
//点乘法 elementWiseMultiplication
cv::Mat EWM(cv::Mat m1,cv::Mat m2){
Mat dst=m1.mul(m2);
return dst;
}
void main()
{
Mat src = imread("hand.jpg",0);
Mat meanMask;
Mat varMask;
Mat meanGlobal;
Mat varGlobal;
Mat dst;
Mat tmp;
Mat tmp2;
int C = 30;
int D = 133;
//全局均值和均方差
blur(src.clone(),meanGlobal,src.size());
varGlobal = src - meanGlobal;
varGlobal = EWM(varGlobal,varGlobal);
blur(src.clone(),meanMask,Size(50,50));//meanMask为局部均值
tmp = src - meanMask;
varMask = EWM(tmp,tmp);
blur(varMask,varMask,Size(50,50)); //varMask为局部方差
dst = meanMask + C*tmp;
imshow("src",src);
imshow("dst",dst);
waitKey();
}
接下来,为了实现那么需要计算局部标准差和全局均值或方差
前面已经计算出了局部均值,那么
tmp = src - meanMask;
varMask = EWM(tmp,tmp);
blur(varMask,varMask,Size(50,50)); //varMask为局部方差
计算出局部方差
//换算成局部标准差
varMask.convertTo(varMask,CV_32F);
for (int i=0;i<varMask.rows;i++){
for (int j=0;j<varMask.cols;j++){
varMask.at<float>(i,j) = (float)sqrt(varMask.at<float>(i,j));
}
}
换算成局部标准差
meanStdDev(src,meanGlobal,varGlobal); //meanGlobal为全局均值 varGlobal为全局标准差
是opencv提供的全局均值和标准差计算函数。
全部代码进行重构后如下
//ace 自适应对比度均衡研究
//by jsxyhelu
//感谢 imageshop
#include "stdafx.h"
#include <iostream>
#include "opencv2/core/core.hpp"
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp"
using namespace std;
using namespace cv;
//点乘法 elementWiseMultiplication
cv::Mat EWM(cv::Mat m1,cv::Mat m2){
Mat dst=m1.mul(m2);
return dst;
}
//图像局部对比度增强算法
cv::Mat ACE(cv::Mat src,int C = 4,int n=20,int MaxCG = 5){
Mat meanMask;
Mat varMask;
Mat meanGlobal;
Mat varGlobal;
Mat dst;
Mat tmp;
Mat tmp2;
blur(src.clone(),meanMask,Size(50,50));//meanMask为局部均值
tmp = src - meanMask;
varMask = EWM(tmp,tmp);
blur(varMask,varMask,Size(50,50)); //varMask为局部方差
//换算成局部标准差
varMask.convertTo(varMask,CV_32F);
for (int i=0;i<varMask.rows;i++){
for (int j=0;j<varMask.cols;j++){
varMask.at<float>(i,j) = (float)sqrt(varMask.at<float>(i,j));
}
}
meanStdDev(src,meanGlobal,varGlobal); //meanGlobal为全局均值 varGlobal为全局标准差
tmp2 = varGlobal/varMask;
for (int i=0;i<tmp2.rows;i++){
for (int j=0;j<tmp2.cols;j++){
if (tmp2.at<float>(i,j)>MaxCG){
tmp2.at<float>(i,j) = MaxCG;
}
}
}
tmp2.convertTo(tmp2,CV_8U);
tmp2 = EWM(tmp2,tmp);
dst = meanMask + tmp2;
imshow("D方法",dst);
dst = meanMask + C*tmp;
imshow("C方法",dst);
return dst;
}
void main()
{
Mat src = imread("plant.bmp",0);
imshow("src",src);
ACE(src);
waitKey();
}
三、小结
从结果上来看,ACE算法对于特定情况下的图片细节增强是显著的,但是并不是适用于所有的情况,并且其参数需要手工进行调整。了解它的特性,就能够解决一系列的问题,有效地增强现实。