Treap 实现名次树

在主流STL版本中,set,map,都是BST实现的,具体来说是一种称为红黑树的动态平衡BST;

但是在竞赛中并不常用,因为红黑树过于复杂,他的插入 5 种,删除 6 中,代码量极大(如果你要改板子的话);

相比之下有一种Treap的动态平衡BST,却也可以做到插入,删除,查找的期望时间复杂度O(logn);

结点定义:

struct Node {
    Node *ch[2];
    int r;  //优先级
    int v;  //值
    int s;  //结点总数

    Node(int v):v(v) {
        ch[0] = ch[1] = NULL;
        r = rand();
        s = 1;
    }

    bool operator < (const Node& rhs) const {
        return r < rhs.r;
    }

    int cmp(int x) const {
        if(x==v) return -1;
        return x < v ? 0:1;
    }

    void maintain() {
        s = 1;
        if(ch[0]!=NULL) s +=ch[0]->s;
        if(ch[1]!=NULL) s +=ch[1]->s;
    }
};

我这里加了一些看似不需要的东西s,而这个 s却是Treap相比BST的闪光点!!!

动态平衡二叉树 BST 的性质 v,值,根大于左子树,小于右子树; cmp函数,插入,删除时,小于 v,返回 0;

r   : 堆的性质,大根堆,根优先级最高;

旋转操作是一个坎,虽然不难,但是好多书籍上面感觉欲言又止;

左旋: 由于 堆的性质,可能使得 BST 不对(插入,删除),需要旋转,比如说,o点的优先级小于 k 点的优先级,要左旋,(大于,相反)

这个时候要是还想满足BST的性质,只需要改动几个点,就ok了。

//旋转
void rotate(Node* &o,int d) {
    Node* k = o->ch[d^1];
    o->ch[d^1] = k->ch[d];
    k->ch[d] = o;
    o->maintain();
    k->maintain();
    o = k;
}

同时,maintain函数,要重新统计节点数。

插入操作;

首先按照普通的BST递归插入;

插入后,发现,此时的堆性质已经不满足了;要进行递归旋转!!!

//插入
void insert(Node* &o,int x) {
    if(o==NULL) o = new Node(x);
    else {
        int d = (x< o->v?0:1);  //可能有相同的元素要插入
        insert(o->ch[d],x);
        if(o->ch[d]->r > o->r)
            rotate(o,d^1);
    }
    o->maintain();
}

同样,每次递归到一层,重新维护节点信息;

删除操作:

首先递归找到这个结点;

这个结点如果左子树为空,或者右子树为空,很好解决;相反的子树代替父节点;

要是两者都有怎么解决?保持堆的性质 和 BST的性质?

先不急于删去点,首先比较一下左右子树的优先级,把优先级较高的子树旋转到根;

例如上图中,加入 k 较高,右旋到左边的图;然后递归删除 k ,这样就保证了整个Treap树的性质!!!

//删除
void remove(Node* &o,int x) {
    int d = o->cmp(x);
    if(d==-1) {
        Node* u = o;
        if(o->ch[0]!=NULL&&o->ch[1]!=NULL) {
            int d2 = (o->ch[0]->r > o->ch[1]->r ? 1 : 0);
            rotate(o,d2);
            remove(o->ch[d2],x);
        }
        else {
            if(o->ch[0]==NULL)
                o = o ->ch[1];
            else o = o ->ch[0];
        }
    }
    else {
        remove(o->ch[d],x);
    }
    if(o!=NULL) o->maintain();
}

注意:插入,删除,的时候没有去检查,可以先去检查了一下,这样就完全和set是一样的了

int find(Node* o,int x) {
    while(o!=NULL) {
        int d = o->cmp(x);
        if(d==-1) return 1; //存在
        else o = o->ch[d];
    }
    return 0;   //不存在
}

到了这里就已经完全实现了Treap树了,很happy\(^o^)/~

但是:

如果说,Treap树和 set 是一样的,那就没必要写 Treap了,举个栗子!

名次树!!!

个人柑橘往左子树走很巧妙, (^-^)V

利用右子树有多少节点而往左子树走;

//名次树
Node* root[maxn];

//第 k 大的值
int kth(Node* o,int k) {
    if(o==NULL||k<=0||k>o->s) return 0;
    int s = (o->ch[1]==NULL ? 0: o->ch[1]->s);
    if(k==s+1) return o->v;
    else if(k<=s) return kth(o->ch[1],k);
    else return kth(o->ch[0],k-s-1);
}
时间: 2025-01-16 19:55:21

Treap 实现名次树的相关文章

Treap和名次树

Treap名字的来源:Tree+Heap,正如名字一样,就是一颗简单的BST,一坨堆的合体.BST的不平衡的根本原因在于基于左<=根<=右的模式吃单调序列时候会无脑成长链,而Treap则添加一个优先级属性,值的大小随机生成,用最大堆的方式维护.之所以使用堆,是因为堆是一颗 完全二叉树,而BST梦寐以求的就是完全二叉结构,二者一结合,就产生了一种新的Balanced BST.Treap依赖于随机数,随机生成的优先级属性,通过简单的左右旋可以将长链旋转成近似完全二叉树结构,注意只是近似,平均情况下

Treap实现名次树

Treap(树堆)的大部分功能STL的set都可以实现,但因为set的过度封装使得某些特定的功能不能实现,比如求第k大的值. Code: 1 #include<bits/stdc++.h> 2 using namespace std; 3 const int maxn = 1000 + 10; 4 5 struct node { 6 node *ch[2]; 7 int r; 8 int v; 9 int s; 10 node (int v):v(v) {ch[0] = ch[1] = NUL

poj 1442 Treap实现名次树

Treap的入门题目,每个结点多维护一个size表示以它为根的子树的结点数,然后查kth的时候一层一层向下即可. 1 #include <iostream> 2 #include <cstring> 3 #include <cstdlib> 4 #include <cstdio> 5 #include <ctime> 6 using namespace std; 7 8 struct Node 9 { 10 Node * ch[2]; 11 in

uvalive 5031 Graph and Queries 名次树+Treap

题意:给你个点m条边的无向图,每个节点都有一个整数权值.你的任务是执行一系列操作.操作分为3种... 思路:本题一点要逆向来做,正向每次如果删边,复杂度太高.逆向到一定顺序的时候添加一条边更容易.详见算法指南P235. 1 #include<cstdlib> 2 3 struct Node 4 { 5 Node *ch[2]; // 左右子树 6 int r; // 随机优先级 7 int v; // 值 8 int s; // 结点总数 9 Node(int v):v(v) 10 { 11

LA 5031 Graph and Queries —— Treap名次树

离线做法,逆序执行操作,那么原本的删除边的操作变为加入边的操作,用名次树维护每一个连通分量的名次,加边操作即是连通分量合并操作,每次将结点数小的子树向结点数大的子树合并,那么单次合并复杂度O(n1logn2),由于合并之后原本结点数少的子树结点数至少翻倍,所以每个结点最多被插入 logn 次,故总时间复杂度为 O(n log2n)  . 注意细节处理,代码如下: 1 #include <cstdio> 2 #include <cstdlib> 3 #include <cstr

UVa 1479 (Treap 名次树) Graph and Queries

这题写起来真累.. 名次树就是多了一个附加信息记录以该节点为根的树的总结点的个数,由于BST的性质再根据这个附加信息,我们可以很容易找到这棵树中第k大的值是多少. 所以在这道题中用一棵名次树来维护一个连通分量. 由于图中添边比较方便,用并查集来表示连通分量就好了,但是删边不太容易实现. 所以,先把所有的边删去,然后逆序执行命令.当然,C命令也要发生一些变化,比如说顺序的情况是从a变成b,那么逆序执行的话应该就是从b变成a. 最后两棵树的合并就是启发式合并,把节点数少的数并到节点数多的数里去. 1

bzoj1503 [NOI2004]郁闷的出纳员(名次树+懒惰标记)

1503: [NOI2004]郁闷的出纳员 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 8705  Solved: 3027[Submit][Status][Discuss] Description OIER 公司是一家大型专业化软件公司,有着数以万计的员工.作为一名出纳员,我的任务之一便是统计每位员工的工资.这本来是一份不错的工作,但是令人郁闷的是, 我们的老板反复无常,经常调整员工的工资.如果他心情好,就可能把每位员工的工资加上一个相同的量.反

斜堆,非旋转treap,替罪羊树

一.斜堆 斜堆是一种可以合并的堆 节点信息: struct Node { int v; Node *ch[2]; }; 主要利用merge函数 Node *merge(Node *x, Node *y) { if(!x) return y; if(!y) return x; if(x->v < y->v) swap(x, y); x->ch[1] = merge(x->ch[1], y); return swap(x->ch[0], x->ch[1]), x; }

[COGS 2421] [HZOI 2016] 简单的Treap 笛卡尔树

笛卡尔树就是你给两维限制,一维堆R,一维二叉搜索树K,平地拔起一棵Treap,最广范的应用:用LCA求区间最值,建Treap,还有个什么范围top k我表示并不会查都查不到.它最妙最高的地方在于用栈来建树:我们可以先排序K然后一个个插入,那么我们都是最右端,横容易被卡,那么我们不从上到下,我们从下到上,用栈维护,那就把时间复杂度从O(n^2)降到O(n),具体过程见下图从图一到图二就是这么一个过程,我们在把K为13的点插入时要找到一个合适的位置,上比他大,下比他小(假设大根堆) 下面见代码 #i