20160725noip模拟赛“Paodekuai” alexandrali

T1:

我们可以用火柴棒来表示十进制下的0~9, 如图所示

现给定火柴数n, 问用这n根火柴能组成的最小数和最大数分别是多少. 所有火柴必须全部用完, 并且所有数字必须是正的且不含前缀零.

【解题】

首先最大数,我们要让位数最多,那么如果n是偶数,那么输出n/2个1,否则就在前面加上个7 然后输出个1

最小的数,有点难办,我们发现前三位都是循环,然后剩下火柴数量都是7的倍数,要使答案尽量小,再后面加上若干个8即可

#include<map>
#include<stack>
#include<queue>
#include<cstdio>
#include<string>
#include<vector>
#include<cstring>
#include<complex>
#include<iostream>
#include<assert.h>
#include<algorithm>
using namespace std;
#define inf 1001001001
#define infll 1001001001001001001LL
#define FOR0(i,n) for(int (i)=0;(i)<(n);++(i))
#define FOR1(i,n) for(int (i)=1;(i)<=(n);++(i))
#define ll long long
#define dbg(vari) cerr<<#vari<<" = "<<(vari)<<endl
#define gmax(a,b) (a)=max((a),(b))
#define gmin(a,b) (a)=min((a),(b))
#define ios0 ios_base::sync_with_stdio(0)
#define Ri register int
#define gc getchar()
#define il inline
il int read(){
    bool f=true;
    Ri x=0;char ch;
    while(!isdigit(ch=gc))if(ch==‘-‘)f=false;
    while(isdigit(ch)){x=(x<<1)+(x<<3)+ch-‘0‘;ch=gc;}
    return f?x:-x;
}
#define gi read()
#define FO(x) freopen(#x".in","r",stdin),freopen(#x".out","w",stdout);
int ten[]={0,inf,1,
7,
4,
2,
6,
8,
10,
18,
22};
int cir[]={200,20,2,6,0,10,1};
int cirr[]={17,11,5,6,0,8,2};
int main(){
    FO(match);
    int T=gi;
    while(T--){
        RI(n);
        int _n=n;
        if(n<=10)
            printf("%d ",ten[n]);
        else{

            if(cir[(n-10)%7])
                cout<<cir[(n-10)%7];
            n=n-cirr[(n-10)%7];
            while(n){
                cout<<8;n-=7;
            }cout<<‘ ‘;
        }
        n=_n;
        if(n&1){putchar(‘7‘);n-=3;}
        while(n){putchar(‘1‘);n-=2;}putchar(‘\n‘);
    }
    return 0;
}

T2

定义从一个点(x, 0)到一个线段[L, R]的覆盖范围, 是若x < L 或x > R, 则覆盖范围为0; 否则, 覆盖范围为min(x – L, R – x).

现给你n个线段[Li, Ri], 以及m组询问. 每组询问包含一个点(xi, 0), 求该点到所有线段的覆盖范围中的最大值.

【解题】

离散化所有询问

左端点变成[L,mid] 右端点变成[mid+1,R],询问的鬼东西就是堆中的最值(建议使用multiset

/*没有代码*/

T3

一行总共长度为n米的长龙, 由公共汽车组成, 可能是长度为5米的短车, 也可能是长度为10米的长车. 短车有k种不同的染色方法, 长车有l中不同的染色方法. 问这一行可能有多少种不同的样子?

【解题】

首先长度5和10可以变成1和2

那么很显然的递推式

答案就是

然后我们一看n<=,看这个式子可以用矩阵乘法优化计算复杂度

然后只要求大概这样,然后没了

#include<map>
#include<stack>
#include<queue>
#include<cstdio>
#include<string>
#include<vector>
#include<cstring>
#include<complex>
#include<iostream>
#include<assert.h>
#include<algorithm>
using namespace std;
#define pb push_back
#define inf 1001001001
#define infll 1001001001001001001LL
#define FOR0(i,n) for(int (i)=0;(i)<(n);++(i))
#define FOR1(i,n) for(int (i)=1;(i)<=(n);++(i))
#define mp make_pair
#define pii pair<int,int>
#define ll long long
#define ld double
#define vi vector<int>
#define SZ(x) ((int)((x).size()))
#define fi first
#define se second
#define RI(n) int (n); scanf("%d",&(n));
#define RI2(n,m) int (n),(m); scanf("%d %d",&(n),&(m));
#define RI3(n,m,k) int (n),(m),(k); scanf("%d %d %d",&(n),&(m),&(k));
template<typename T,typename TT> ostream& operator<<(ostream &s,pair<T,TT> t) {return s<<"("<<t.first<<","<<t.second<<")";}
template<typename T> ostream& operator<<(ostream &s,vector<T> t){FOR0(i,sz(t))s<<t[i]<<" ";return s; }
#define dbg(vari) cerr<<#vari<<" = "<<(vari)<<endl
#define all(t) t.begin(),t.end()
#define FEACH(i,t) for (typeof(t.begin()) i=t.begin(); i!=t.end(); i++)
#define TESTS RI(testow)while(testow--)
#define FORZ(i,a,b) for(int (i)=(a);(i)<=(b);++i)
#define FORD(i,a,b) for(int (i)=(a); (i)>=(b);--i)
#define gmax(a,b) (a)=max((a),(b))
#define gmin(a,b) (a)=min((a),(b))
#define ios0 ios_base::sync_with_stdio(0)
using namespace std;
#define Ri register int
#define gc getchar()
#define il inline
il int read(){
    bool f=true;
    Ri x=0;char ch;
    while(!isdigit(ch=gc))if(ch==‘-‘)f=false;
    while(isdigit(ch)){x=(x<<1)+(x<<3)+ch-‘0‘;ch=gc;}
    return f?x:-x;
}
#define gi read()
#define FO(x) freopen(#x".in","r",stdin),freopen(#x".out","w",stdout);
ll MOD=1000000;
struct Matrix{
    ll a[2][2];
    ll* operator[](int x){return a[x];}
};
Matrix operator*(Matrix a,Matrix b){
    Matrix s;
    for(int i=0;i<2;i++){
        for(int j=0;j<2;j++){
            ll ans=0;
            for(int k=0;k<2;k++) ans+=a[i][k]*b[k][j]%MOD;
            s[i][j]=ans%MOD;
        }
    }
    return s;
}
Matrix Pow(Matrix s,ll d){
    Matrix ans;
    for(int i=0;i<2;i++) ans[i][i]=1;
    while(d){
        if(d&1)
            ans=ans*s;
        s=s*s;
        d>>=1;
    }
    return ans;
}
int main(){
    freopen("color.in","r",stdin);
    freopen("color.out","w",stdout);
    ll n,k,l;
    while(scanf("%lld%lld%lld",&n,&k,&l)!=EOF){
        n/=5;k%=MOD;l%=MOD;
        Matrix s;
        s[0][0]=0;s[0][1]=l;
        s[1][0]=1;s[1][1]=k;
        Matrix qq=Pow(s,n);
        ll ans=(qq[1][1]%MOD+MOD)%MOD;
        printf("%06d\n",ans);
    }
}
时间: 2024-10-10 16:37:53

20160725noip模拟赛“Paodekuai” alexandrali的相关文章

【BZOJ】【2741】【FOTILE模拟赛】L

可持久化Trie+分块 神题……Orz zyf & lyd 首先我们先将整个序列搞个前缀异或和,那么某一段的异或和,就变成了两个数的异或和,所以我们就将询问[某个区间中最大的区间异或和]改变成[某个区间中 max(两个数的异或和)] 要是我们能将所有[l,r]的答案都预处理出来,那么我们就可以O(1)回答了:然而我们并不能. 一个常见的折中方案:分块! 这里先假设我们实现了一个神奇的函数ask(l,r,x),可以帮我们求出[l,r]这个区间中的数,与x最大的异或值. 我们不预处理所有的左端点,我

10.30 NFLS-NOIP模拟赛 解题报告

总结:今天去了NOIP模拟赛,其实是几道USACO的经典的题目,第一题和最后一题都有思路,第二题是我一开始写了个spfa,写了一半中途发现应该是矩阵乘法,然后没做完,然后就没有然后了!第二题的暴力都没码QAQ 现在我来写解题报告了,有点饿了QAQ.. 第一题 题目 1: 架设电话线 [Jeffrey Wang, 2007] 最近,Farmer John的奶牛们越来越不满于牛棚里一塌糊涂的电话服务,于 是,她们要求FJ把那些老旧的电话线换成性能更好的新电话线.新的电话线架设 在已有的N(2 <=

bzoj 2741: 【FOTILE模拟赛】L 分塊+可持久化trie

2741: [FOTILE模拟赛]L Time Limit: 15 Sec  Memory Limit: 162 MBSubmit: 1116  Solved: 292[Submit][Status] Description FOTILE得到了一个长为N的序列A,为了拯救地球,他希望知道某些区间内的最大的连续XOR和. 即对于一个询问,你需要求出max(Ai xor Ai+1 xor Ai+2 ... xor Aj),其中l<=i<=j<=r. 为了体现在线操作,对于一个询问(x,y):

9.14 模拟赛

模拟赛第三弹~ T1 题意:给你一个数列,要求删掉任意一种整数,使得剩下的新数列中连续的相等的数最多 例如 2 7 3 7 7 3 3 7 7 5 7,删掉3以后剩的7有四个连续的,最多 思路:暴力枚举去掉哪个......这算是一道水题吧 代码丢了...... TAT T2 题意:有n本书,每本书有宽度和高度.现在你有无数个书架,每个书架的宽度为w,高度由最高的书决定 问在书本按顺序放的情况下,总的书架高度最小是多少 思路:dp,dp[i]表示做到第i本书时的最小高度和. 每次先找到能以编号j的

2014-9-9 NOIP模拟赛

东方幻想乡系列模拟赛Stage 1命题 Nettle审题 Barty ccy1991911 FlanS39 Wagner T2 高精除高精,从来没写过,不知道怎么写,我就用大数减小数ans次,果断超时. T4 Tarjan的板子题,好久没写,中间出现了一些小错误 ①是尽管有双向边,Tarjan函数中也不必排除双向边 ②Tarjan算法有时候不能一步完成,需要做最多n次,用循环解决 ③问题是关于这个题目的虽然输入n代表有n个点,但是下面的连边中有些点根本没出现过,所以设一个数组记录有效点. Pro

【题解】PAT团体程序设计天梯赛 - 模拟赛

由于本人愚笨,最后一题实在无力AC,于是只有前14题的题解Orz 总的来说,这次模拟赛的题目不算难,前14题基本上一眼就有思路,但是某些题写起来确实不太容易,编码复杂度有点高~ L1-1 N个数求和 设计一个分数类,重载加法运算符,注意要约分,用欧几里得算法求个最大公约数即可. 1 #include <cstdio> 2 3 long long abs(long long x) 4 { 5 return x < 0 ? -x : x; 6 } 7 8 long long gcd(long

20161027模拟赛解题报告

20161027模拟赛解题报告 By shenben T1 数学题 模拟即可. 注意开long long T2 技巧题 图片为本题第一张图.(无奈,图传不上来) 首先第一问图中的“Y 字形”的数量,这么简单,在此不细讲. 详见代码 O(n)累加一下就好了 主要说说第二问怎么搞 预处理 每个点分别与其他那些点相连 权值为第1,2,3大(若没有2,3大,就忽略).记录一下权值与对应的点的标号.目的是方便下面的判断. 枚举入度>=3的点,即点B(有多个) 再枚举点B相连的D点(不是点A,C). Ste

[GRYZ]寒假模拟赛

写在前面 这是首次广饶一中的OIERS自编自导,自出自做(zuo)的模拟赛. 鉴于水平气压比较低,机(wei)智(suo)的WMY/XYD/HYXZC就上网FQ下海找了不少水(fei)题,经过他们优(le)美(se)的文字加工后,有故事有题目有人物有奸情的模拟赛正式呈上. 我是正文 题目名 GRYZ娱乐时刻 GRYZ追击时刻 GRYZ就餐时刻 源文件 hyxzc.cpp/c/pas clikar.cpp/c/pas eat.cpp/c/pas 输入文件 hyxzc.in clikar.in ea

【简单思考】noip模拟赛 NTR酋长

NTR酋长 (ntr.pas/.c/.cpp) 黄巨大终于如愿以偿的进入了czy的后宫中……但是czy很生气……他要在黄巨大走到他面前的必经之路上放上几个NTR酋长来阻挡黄巨大. 众所周知,NTR酋长有一个技能是沟壑(F).它会在地图上产生一条长长的障碍物阻挡人前进.Czy打算在一个n*m的矩形(必经之路?)中放上NTR酋长.NTR酋长要一个一个放下去,而且每放一个都会向四角倾斜的方向放出无限长的沟壑,而已经被沟壑挡住的地方就不能再放NTR酋长了. 请注意:不会出现沟壑的路径挡住另一个沟壑的情况