最小二乘法和最大似然估计的联系和区别(转)

对于最小二乘法,当从模型总体随机抽取n组样本观测值后,最合理的参数估计量应该使得模型能最好地拟合样本数据,也就是估计值和观测值之差的平方和最小。而对于最大似然法,当从模型总体随机抽取n组样本观测值后,最合理的参数估计量应该使得从模型中抽取该n组样本观测值的概率最大。显然,这是从不同原理出发的两种参数估计方法

在最大似然法中,通过选择参数,使已知数据在某种意义下最有可能出现,而某种意义通常指似然函数最大,而似然函数又往往指数据的概率分布函数。与最小二乘法不同的是,最大似然法需要已知这个概率分布函数,这在实践中是很困难的。一般假设其满足正态分布函数的特性,在这种情况下,最大似然估计和最小二乘估计相同

最小二乘法以估计值与观测值的差的平方和作为损失函数,极大似然法则是以最大化目标值的似然概率函数为目标函数,从概率统计的角度处理线性回归并在似然概率函数为高斯函数的假设下同最小二乘建立了的联系。

最小二乘法?为神马不是差的绝对值

http://blog.sciencenet.cn/blog-430956-621997.html

二者联系和区别

http://blog.csdn.net/rosenor1/article/details/52268039

时间: 2024-10-27 02:07:00

最小二乘法和最大似然估计的联系和区别(转)的相关文章

最小二乘与最大似然估计之间的关系

          1.结论               测量误差(测量)服从高斯分布的情况下, 最小二乘法等价于极大似然估计.           2.最大似然估计                                                  最大似然估计就是通过求解最大的(1)式得到参数,其中 L 函数称为参数的似然函数,是一个概率分布函数.               似然估计的思想是:测量值 X 是服从概率分布的,求概率模型中的参数,使得在假设的分布下获得该组测量出现

最小二乘法和最大似然估计

一:背景:当给出我们一些样本点,我们可以用一条直接对其进行拟合,如y= a0+a1x1+a2x2,公式中y是样本的标签,{x1,x2,x3}是特征,当我们给定特征的大小,让你预测标签,此时我们就需要事先知道参数{a1,a2}.而最小二乘法和最大似然估计就是根据一些给定样本(包括标签值)去对参数进行估计<参数估计的方法>.一般用于线性回归中获得参数进行拟合.而梯度下降方法主要用于逻辑回归分类问题中寻找最佳参数. 二:最小二乘法: 基本思想: 简单地说,最小二乘的思想就是要使得观测点和估计点的距离

模式识别:最大似然估计与贝叶斯估计方法

之前学习了贝叶斯分类器的构造和使用,其中核心的部分是得到事件的先验概率并计算出后验概率 ,而事实上在实际使用中,很多时候无法得到这些完整的信息,因此我们需要使用另外一个重要的工具--参数估计. 参数估计是在已知系统模型结构时,用系统的输入和输出数据计算系统模型参数的过程.18世纪末德国数学家C.F.高斯首先提出参数估计的方法,他用最小二乘法计算天体运行的轨道.20世纪60年代,随着电子计算机的普及,参数估计有了飞速的发展.参数估计有多种方法,有最小二乘法.极大似然法.极大验后法.最小风险法和极小

最大似然估计和最大后验概率MAP

最大似然估计是一种奇妙的东西,我觉得发明这种估计的人特别才华.如果是我,觉得很难凭空想到这样做. 极大似然估计和贝叶斯估计分别代表了频率派和贝叶斯派的观点.频率派认为,参数是客观存在的,只是未知而矣.因此,频率派最关心极大似然函数,只要参数求出来了,给定自变量X,Y也就固定了,极大似然估计如下所示: 相反的,贝叶斯派认为参数也是随机的,和一般随机变量没有本质区别,正是因为参数不能固定,当给定一个输入x后,我们不能用一个确定的y表示输出结果,必须用一个概率的方式表达出来,所以贝叶斯学派的预测值是一

参数估计:最大似然估计、贝叶斯估计与最大后验估计

简介: 在概率统计中有两种主要的方法:参数统计和非参数统计(或者说参数估计和非参数估计). 其中,参数估计是概率统计的一种方法.主要在样本知道情况下,一般知道或假设样本服从某种概率分布,但不知到具体参数(或者知道具体模型,但不知道模型的参数). 参数估计就是通过多次试验,观察其结果,利用结果推出参数的大概值. (当你推出参数的极大可能值时,就相当于知道了分布及其参数情况,就可以利用它来推测其他样例出现的概率了. 这属于应用了) 参数估计的方法有多种,这里我们分析三种基于概率的方法,分别是最大似然

最大似然估计(MLE)和最大后验概率(MAP)

最大似然估计: 最大似然估计提供了一种给定观察数据来评估模型参数的方法,即:“模型已定,参数未知”.简单而言,假设我们要统计全国人口的身高,首先假设这个身高服从服从正态分布,但是该分布的均值与方差未知.我们没有人力与物力去统计全国每个人的身高,但是可以通过采样,获取部分人的身高,然后通过最大似然估计来获取上述假设中的正态分布的均值与方差. 最大似然估计中采样需满足一个很重要的假设,就是所有的采样都是独立同分布的.下面我们具体描述一下最大似然估计: 首先,假设为独立同分布的采样,θ为模型参数,f为

先验概率、最大似然估计、贝叶斯估计、最大后验概率

先验概率 先验概率(prior probability)是指根据以往经验和分析得到的概率,如全概率公式,它往往作为"由因求果"问题中的"因"出现的概率. 先验概率的分类 利用过去历史资料计算得到的先验概率,称为客观先验概率: 当历史资料无从取得或资料不完全时,凭人们的主观经验来判断而得到的先验概率,称为主观先验概率. 先验概率的条件 先验概率是通过古典概率模型加以定义的,故又称为古典概率.古典概率模型要求满足两个条件:(1)试验的所有可能结果是有限的;(2)每一种可

最大似然估计与最大后验概率估计

本文转自http://blog.csdn.net/sunmenggmail/article/details/13004675 1. 最大似然估计提供了一种给定观察数据来评估模型参数的方法,即:“模型已定,参数未知”.简单而言,假设我们要统计全国人口的身高,首先假设这个身高服从服从正态分布,但是该分布的均值与方差未知.我们没有人力与物力去统计全国每个人的身高,但是可以通过采样,获取部分人的身高,然后通过最大似然估计来获取上述假设中的正态分布的均值与方差.最大似然就是寻找最可能的参数,使得这些采样样

最大似然估计 (MLE)与 最大后验概率(MAP)在机器学习中的应用

最大似然估计 MLE 给定一堆数据,假如我们知道它是从某一种分布中随机取出来的,可是我们并不知道这个分布具体的参,即“模型已定,参数未知”. 例如,对于线性回归,我们假定样本是服从正态分布,但是不知道均值和方差:或者对于逻辑回归,我们假定样本是服从二项分布,但是不知道均值,逻辑回归公式得到的是因变量y的概率P = g(x), x为自变量,通过逻辑函数得到一个概率值,y对应离散值为0或者1,Y服从二项分布,误差项服从二项分布,而非高斯分布,所以不能用最小二乘进行模型参数估计,可以用极大似然估计来进