数据结构实践——用二叉树求解代数表达式

本文是针对数据结构基础系列(6):树和二叉树的配套实践。

【项目 - 用二叉树求解代数表达式】

  用二叉树来表示代数表达式,树的每一个分支节点代表一个运算符,每一个叶子节点代表一个运算数(为简化,只支持二目运算的+、-、*、/,不加括号,运算数也只是一位的数字字符。本项目只考虑输入合乎以上规则的情况)。请设计算法,(1)根据形如“1+2?3?4/5 ”的字符串代表的表达式,构造出对应的二叉树(如图),用后序遍历的思路计算表达式的值时,能体现出先乘除后加减的规则;(2)对构造出的二叉树,计算出表达式的值。

[参考解答] 程序中的btree.h,见二叉树算法库

#include <stdio.h>
#include <string.h>
#include <malloc.h>
#include "btree.h"

//用s[i]到s[j]之间的字符串,构造二叉树的表示形式
BTNode *CRTree(char s[],int i,int j)
{
    BTNode *p;
    int k,plus=0,posi;
    if (i==j)    //i和j相同,意味着只有一个字符,构造的是一个叶子节点
    {
        p=(BTNode *)malloc(sizeof(BTNode));   //分配存储空间
        p->data=s[i];                         //值为s[i]
        p->lchild=NULL;
        p->rchild=NULL;
        return p;
    }
    //以下为i!=j的情况
    for (k=i; k<=j; k++)
        if (s[k]==‘+‘ || s[k]==‘-‘)
        {
            plus++;
            posi=k;              //最后一个+或-的位置
        }
    if (plus==0)                 //没有+或-的情况(因为若有+、-,前面必会执行plus++)
        for (k=i; k<=j; k++)
            if (s[k]==‘*‘ || s[k]==‘/‘)
            {
                plus++;
                posi=k;
            }
    //以上的处理考虑了优先将+、-放到二叉树较高的层次上
    //由于将来计算时,运用的是后序遍历的思路
    //处于较低层的乘除会优先运算
    //从而体现了“先乘除后加减”的运算法则
    //创建一个分支节点,用检测到的运算符作为节点值
    if (plus!=0)
    {
        p=(BTNode *)malloc(sizeof(BTNode));
        p->data=s[posi];                //节点值是s[posi]
        p->lchild=CRTree(s,i,posi-1);   //左子树由s[i]至s[posi-1]构成
        p->rchild=CRTree(s,posi+1,j);   //右子树由s[poso+1]到s[j]构成
        return p;
    }
    else       //若没有任何运算符,返回NULL
        return NULL;
}

double Comp(BTNode *b)
{
    double v1,v2;
    if (b==NULL)
        return 0;
    if (b->lchild==NULL && b->rchild==NULL)  //叶子节点,应该是一个数字字符(本项目未考虑非法表达式)
        return b->data-‘0‘;    //叶子节点直接返回节点值,结点中保存的数字用的是字符形式,所以要-‘0‘
    v1=Comp(b->lchild); //先计算左子树
    v2=Comp(b->rchild); //再计算右子树
    switch(b->data)     //将左、右子树运算的结果再进行运算,运用的是后序遍历的思路
    {
    case ‘+‘:
        return v1+v2;
    case ‘-‘:
        return v1-v2;
    case ‘*‘:
        return v1*v2;
    case ‘/‘:
        if (v2!=0)
            return v1/v2;
        else
            abort();
    }
}

int main()
{
    BTNode *b;
    char s[MaxSize]="1+2*3-4/5";
    printf("代数表达式%s\n",s);
    b=CRTree(s,0,strlen(s)-1);
    printf("对应二叉树:");
    DispBTNode(b);
    printf("\n表达式的值:%g\n",Comp(b));
    DestroyBTNode(b);
    return 0;
}

版权声明:本文为博主原创文章,未经博主允许不得转载。

时间: 2024-10-06 21:27:46

数据结构实践——用二叉树求解代数表达式的相关文章

数据结构实践项目——树和二叉树(2)

本文针对数据结构基础系列(6):树和二叉树第7, 11-15课时 7 二叉树与树.森林之间的转换 11 二叉树遍历非递归算法 12 层次遍历算法 13 二叉树的构造 14 线索二叉树 15 哈夫曼树 [项目1 - 二叉树算法验证] 运行并重复测试教学内容中涉及的算法.改变测试数据进行重复测试的意义在于,可以从更多角度体会算法,以达到逐渐掌握算法的程度.使用你的测试数据,并展示测试结果,观察运行结果,以此来领会算法. (1)层次遍历算法的验证 [参考链接] (2)二叉树构造算法的验证 [参考链接]

数据结构快速回顾——二叉树 解幂子集问题

回溯法是设计递归的一种常用方法,它的求解过程实质上就是一个先序遍历一棵"状态树"的过程,只是这棵树不是遍历前预先建立的而是隐含在遍历过程中的. 下面举一个例子:求含n个元素的集的幂集:集合A={ {1,2,3}, {1,2}, {1,3}, {1}, {2,3},{2},{3},{}}; //{}表示空集合从集合A的每一个元素的角度看,它只有两种状态:或者是属于幂集的元素集,或不属于幂集元素集,则求幂集的过程就可以看成是依次对集合A中的元素进行"取","舍

SDUT 3343 数据结构实验之二叉树四:还原二叉树

数据结构实验之二叉树四:还原二叉树 Time Limit: 1000MS Memory Limit: 65536KB Submit Statistic Problem Description 给定一棵二叉树的先序遍历序列和中序遍历序列,要求计算该二叉树的高度. Input 输入数据有多组,每组数据第一行输入1个正整数N(1 <= N <= 50)为树中结点总数,随后2行先后给出先序和中序遍历序列,均是长度为N的不包含重复英文字母(区分大小写)的字符串. Output 输出一个整数,即该二叉树的

【数据结构】之二叉树的java实现

二叉树的定义: 二叉树是树形结构的一个重要类型.许多实际问题抽象出来的数据结构往往是二叉树的形式,即使是一般的树也能简单地转换为二叉树,而且二叉树的存储结构及其算法都较为简单,因此二叉树显得特别重要. 二叉树(BinaryTree)是n(n≥0)个结点的有限集,它或者是空集(n=0),或者由一个根结点及两棵互不相交的.分别称作这个根的左子树和右子树的二叉树组成. 这个定义是递归的.由于左.右子树也是二叉树, 因此子树也可为空树.下图中展现了五种不同基本形态的二叉树. 其中 (a) 为空树, (b

SDUT 3346 数据结构实验之二叉树七:叶子问题

数据结构实验之二叉树七:叶子问题 Time Limit: 1000MS Memory Limit: 65536KB Submit Statistic Problem Description 已知一个按先序输入的字符序列,如abd,,eg,,,cf,,,(其中,表示空结点).请建立该二叉树并按从上到下从左到右的顺序输出该二叉树的所有叶子结点. Input 输入数据有多行,每一行是一个长度小于50个字符的字符串. Output 按从上到下从左到右的顺序输出二叉树的叶子结点. Example Inpu

SDUT 3342 数据结构实验之二叉树三:统计叶子数

数据结构实验之二叉树三:统计叶子数 Time Limit: 1000MS Memory Limit: 65536KB Submit Statistic Problem Description 已知二叉树的一个按先序遍历输入的字符序列,如abc,,de,g,,f,,, (其中,表示空结点).请建立二叉树并求二叉树的叶子结点个数. Input 连续输入多组数据,每组数据输入一个长度小于50个字符的字符串. Output 输出二叉树的叶子结点个数. Example Input abc,,de,g,,f

SDUT 3340 数据结构实验之二叉树一:树的同构

数据结构实验之二叉树一:树的同构 Time Limit: 1000MS Memory Limit: 65536KB Submit Statistic Problem Description 给定两棵树T1和T2.如果T1可以通过若干次左右孩子互换就变成T2,则我们称两棵树是"同构"的.例如图1给出的两棵树就是同构的,因为我们把其中一棵树的结点A.B.G的左右孩子互换后,就得到另外一棵树.而图2就不是同构的. 图1 图2 现给定两棵树,请你判断它们是否是同构的. Input 输入数据包含

javascript实现数据结构:线索二叉树

遍历二叉树是按一定的规则将树中的结点排列成一个线性序列,即是对非线性结构的线性化操作.如何找到遍历过程中动态得到的每个结点的直接前驱和直接后继(第一个和最后一个除外)?如何保存这些信息? 设一棵二叉树有n个结点,则有n-1条边(指针连线) , 而n个结点共有2n个指针域(Lchild和Rchild) ,显然有n+1个空闲指针域未用.则可以利用这些空闲的指针域来存放结点的直接前驱和直接后继信息. 对结点的指针域做如下规定: 1.若结点有左子树,则其leftChild域指示其左孩子,否则令leftC

数据结构快速回顾——二叉树

二叉树(Binary Tree)是个有限元素的集合,该集合或者为空.或者由一个称为根(root)的元素及两个不相交的.被分别称为左子树和右子树的二叉树组成.当集合为空时,称该二叉树为空二叉树.在二叉树中,一个元素也称作一个结点. 基本概念: (1)结点的度.结点所拥有的子树的个数称为该结点的度. (2)叶结点.度为0的结点称为叶结点,或者称为终端结点. (3)分枝结点.度不为0的结点称为分支结点,或者称为非终端结点.一棵树的结点除叶结点外,其余的都是分支结点. (4)左孩子.右孩子.双亲.树中一