异象石/[SDOI2015]寻宝游戏

AcWing 异象石

洛咕 寻宝游戏

题意:Adera是Microsoft应用商店中的一款解谜游戏.

异象石是进入Adera中异时空的引导物,在Adera的异时空中有一张地图.

这张地图上有\(N(N<=1e5)\)个点,有\(N-1\)条双向边把它们连通起来.

起初地图上没有任何异象石,在接下来的\(M(M<=1e5)\)个时刻中,每个时刻会发生以下三种类型的事件之一:

地图的某个点上出现了异象石(已经出现的不会再次出现);

地图某个点上的异象石被摧毁(不会摧毁没有异象石的点);

向玩家询问使所有异象石所在的点连通的边集的总长度最小是多少?

分析:地图实际上就是一棵树,我们对这颗树\(dfs\),求出每个节点的时间戳,也就是\(dfs\)序.然后把出现异象石的节点按照时间戳从小到大排序(首尾相接),累加相邻两个节点之间的路径长度,得到的答案恰好是所求答案的两倍.

所以我们只需要建立一个\(set\),把出现异象石的点丢进去(按照时间戳从小到大排序)就好了.每一次出现一个新的异象石\(x\),就\(insert\)操作,同时更新\(ans=ans+dist(pre,x)+dist(x,nxt)-dist(pre,nxt)\).每次摧毁一个异象石,就是\(erase\)操作,同时更新答案\(ans=ans-dist(pre,x)-dist(x,nxt)+dist(pre,nxt)\).对于询问操作直接输出\(ans/2\)即可.

对于树上任意两点\(x,y\),\(dist(x,y)=d[x]+d[y]-2*d[LCA(x,y)].\)其中\(d[i]\)表示根节点到节点i的距离.

到了这里,本题难度就在于\(set\)的使用了.然后记得开\(long\) \(long.\)

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<queue>
#include<map>
#include<set>
#define ll long long
#define IT set<node>::iterator
using namespace std;
inline int read(){
    int x=0,o=1;char ch=getchar();
    while(ch!='-'&&(ch<'0'||ch>'9'))ch=getchar();
    if(ch=='-')o=-1,ch=getchar();
    while(ch>='0'&&ch<='9')x=x*10+ch-'0',ch=getchar();
    return x*o;
}
const int N=1e5+5;
ll ans,dis[N];
int n,m,tim,dfn[N],dep[N],f[N][25];
int tot,head[N],nxt[N<<1],to[N<<1],w[N<<1];
inline void add(int a,int b,int c){
    nxt[++tot]=head[a];head[a]=tot;
    to[tot]=b;w[tot]=c;
}
inline void dfs(int u,int fa){
    dfn[u]=++tim;
    for(int j=1;j<=20;++j)f[u][j]=f[f[u][j-1]][j-1];
    for(int i=head[u];i;i=nxt[i]){
        int v=to[i];if(v==fa)continue;
        dis[v]=dis[u]+w[i];f[v][0]=u;
        dep[v]=dep[u]+1;dfs(v,u);
    }
}
inline int LCA(int x,int y){
    if(dep[x]<dep[y])swap(x,y);
    for(int j=20;j>=0;--j)if(dep[f[x][j]]>=dep[y])x=f[x][j];
    if(x==y)return x;
    for(int j=20;j>=0;--j)if(f[x][j]!=f[y][j])x=f[x][j],y=f[y][j];
    return f[x][0];
}
struct node{
    int u,v;
    bool operator <(const node &x)const{
        return v<x.v;
    }
};set<node>s;
inline node get_pre(IT x){
    if(x==s.begin())return *(--s.end());
    return *(--x);
}
inline node get_nxt(IT x){
    if(x==--s.end())return *(s.begin());
    return *(++x);
}
inline ll get_ans(int x,int y){return dis[x]+dis[y]-2*dis[LCA(x,y)];}
int main(){
    n=read();
    for(int i=1;i<n;++i){
        int a=read(),b=read(),c=read();
        add(a,b,c);add(b,a,c);
    }
    dfs(1,0);m=read();
    for(int i=1;i<=m;++i){
        char ch;cin>>ch;
        if(ch=='+'){
            int x=read();IT it=s.insert((node){x,dfn[x]}).first;
            int pre=(get_pre(it)).u,nxt=(get_nxt(it)).u;
            ans+=get_ans(((node)*it).u,pre)+get_ans(((node)*it).u,nxt)-get_ans(pre,nxt);
        }
        else if(ch=='-'){
            int x=read();IT it=s.find((node){x,dfn[x]});
            int pre=(get_pre(it)).u,nxt=(get_nxt(it)).u;
            ans-=get_ans(((node)*it).u,pre)+get_ans(((node)*it).u,nxt)-get_ans(pre,nxt);
            s.erase(it);
        }
        else if(ch=='?')printf("%lld\n",ans/2);
    }
    return 0;
}

\([SDOI2015]\)寻宝游戏这道题,输入格式有点不一样,最后的答案也不要除以2,因为上题是把所有异象石节点连起来,而本题是遍历所有有的宝藏节点最后回到出发节点,每条边本来就要走两遍了.

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<queue>
#include<map>
#include<set>
#define ll long long
#define IT set<node>::iterator
using namespace std;
inline int read(){
    int x=0,o=1;char ch=getchar();
    while(ch!='-'&&(ch<'0'||ch>'9'))ch=getchar();
    if(ch=='-')o=-1,ch=getchar();
    while(ch>='0'&&ch<='9')x=x*10+ch-'0',ch=getchar();
    return x*o;
}
const int N=1e5+5;
ll ans,dis[N];
int n,m,tim,dfn[N],dep[N],bj[N],f[N][25];
int tot,head[N],nxt[N<<1],to[N<<1],w[N<<1];
inline void add(int a,int b,int c){
    nxt[++tot]=head[a];head[a]=tot;
    to[tot]=b;w[tot]=c;
}
inline void dfs(int u,int fa){
    dfn[u]=++tim;
    for(int j=1;j<=20;++j)f[u][j]=f[f[u][j-1]][j-1];
    for(int i=head[u];i;i=nxt[i]){
        int v=to[i];if(v==fa)continue;
        dis[v]=dis[u]+w[i];f[v][0]=u;
        dep[v]=dep[u]+1;dfs(v,u);
    }
}
inline int LCA(int x,int y){
    if(dep[x]<dep[y])swap(x,y);
    for(int j=20;j>=0;--j)if(dep[f[x][j]]>=dep[y])x=f[x][j];
    if(x==y)return x;
    for(int j=20;j>=0;--j)if(f[x][j]!=f[y][j])x=f[x][j],y=f[y][j];
    return f[x][0];
}
struct node{
    int u,v;
    bool operator <(const node &x)const{
        return v<x.v;
    }
};set<node>s;
inline node get_pre(IT x){
    if(x==s.begin())return *(--s.end());
    return *(--x);
}
inline node get_nxt(IT x){
    if(x==--s.end())return *(s.begin());
    return *(++x);
}
inline ll get_ans(int x,int y){return dis[x]+dis[y]-2*dis[LCA(x,y)];}
int main(){
    n=read();m=read();
    for(int i=1;i<n;++i){
        int a=read(),b=read(),c=read();
        add(a,b,c);add(b,a,c);
    }
    dfs(1,0);
    for(int i=1;i<=m;++i){
        int x=read();
        if(!bj[x]){//标记数组,判断是否出现过,没出现过就插入
            IT it=s.insert((node){x,dfn[x]}).first;
            int pre=(get_pre(it)).u,nxt=(get_nxt(it)).u;
            ans+=get_ans(((node)*it).u,pre)+get_ans(((node)*it).u,nxt)-get_ans(pre,nxt);
            bj[x]=1;
        }
        else{//出现过就删除
            IT it=s.find((node){x,dfn[x]});
            int pre=(get_pre(it)).u,nxt=(get_nxt(it)).u;
            ans-=get_ans(((node)*it).u,pre)+get_ans(((node)*it).u,nxt)-get_ans(pre,nxt);
            s.erase(it);bj[x]=0;
        }
        printf("%lld\n",ans);
    }
    return 0;
}

原文地址:https://www.cnblogs.com/PPXppx/p/11572324.html

时间: 2024-11-06 03:40:58

异象石/[SDOI2015]寻宝游戏的相关文章

【BZOJ3991】[SDOI2015]寻宝游戏 树链的并+set

[BZOJ3991][SDOI2015]寻宝游戏 Description 小B最近正在玩一个寻宝游戏,这个游戏的地图中有N个村庄和N-1条道路,并且任何两个村庄之间有且仅有一条路径可达.游戏开始时,玩家可以任意选择一个村庄,瞬间转移到这个村庄,然后可以任意在地图的道路上行走,若走到某个村庄中有宝物,则视为找到该村庄内的宝物,直到找到所有宝物并返回到最初转移到的村庄为止.小B希望评测一下这个游戏的难度,因此他需要知道玩家找到所有宝物需要行走的最短路程.但是这个游戏中宝物经常变化,有时某个村庄中会突

【BZOJ 3991】 [SDOI2015]寻宝游戏

3991: [SDOI2015]寻宝游戏 Time Limit: 40 Sec Memory Limit: 128 MB Submit: 251 Solved: 137 [Submit][Status][Discuss] Description 小B最近正在玩一个寻宝游戏,这个游戏的地图中有N个村庄和N-1条道路,并且任何两个村庄之间有且仅有一条路径可达.游戏开始时,玩家可以任意选择一个村庄,瞬间转移到这个村庄,然后可以任意在地图的道路上行走,若走到某个村庄中有宝物,则视为找到该村庄内的宝物,直

P3320 [SDOI2015]寻宝游戏

题目 P3320 [SDOI2015]寻宝游戏 做法 很巧妙的一种思路,懂了之后觉得大水题 首先要知道:在一棵树上标记一些点,然后从任意一点出发,遍历所有的的最小路径为\(dfs\)序从小到大遍历 那就把点丢到\(set\)里面,然后找\(dfs\)的前驱与后继计算路径就好了 其实也有点虚树的思想,只管标记的这几个点 My complete code #include<cstdio> #include<iostream> #include<algorithm> #inc

Luogu P3320 [SDOI2015]寻宝游戏 / 异象石 【LCA/set】

期末考试结束祭! 在期末考试前最后一发的测试中,异象石作为第二道题目出现QAQ.虽然知道是LCA图论,但还是敲不出来QAQ. 花了两天竞赛课的时间搞懂(逃 异象石(stone.pas/c/cpp)题目描述Adera 是 Microsoft 应用商店中的一款解谜游戏.异象石是进入 Adera 中异时空的引导物,在 Adera 的异时空中有一张地图.这张地图上有 N 个点,有 N-1 条双向边把它们连通起来.起初地图上没有任何异象石,在接下来的 M个时刻中,每个时刻会发生以下三种类型的事件之一:1.

「一本通 4.4 例 3」异象石 与 [SDOI2015]寻宝游戏

这两个题差不多先说异象石把 主要是找到本题规律,将所加入的点按dfs序排序,记录为a[1],a[2]..a[n]则当前的答案为每个点与前一个点的距离(第一个点则与最后一点) 当然要动态维护答案,每加入一个点就+与前驱的距离+与后驱的距离-前驱与后驱的距离(删点的话ans减去这个值就好 不过异象石最后的答案要/2: 至于维护的话用set就好 1 #include<bits/stdc++.h> 2 #define ll long long 3 using namespace std; 4 cons

[bzoj3991][SDOI2015]寻宝游戏_树链的并_倍增lca_平衡树set

寻宝游戏 bzoj-3991 SDOI-2015 题目大意:题目链接. 注释:略. 想法:我们发现如果给定了一些点有宝物的话那么答案就是树链的并. 树链的并的求法就是把所有点按照$dfs$序排序然后相加再减去相邻之间的$lca$. 故此我们按照$dfs$序维护一个平衡树. 每次往里插入节点即可. 实时用$lca$更新答案,复杂度$O(nlogn)$. Code: #include <iostream> #include <cstdio> #include <cstring&g

bzoj 3991: [SDOI2015]寻宝游戏

Description 小B最近正在玩一个寻宝游戏,这个游戏的地图中有N个村庄和N-1条道路,并且任何两个村庄之间有且仅有一条路径可达.游戏开始时,玩家可以任意选择一个村庄,瞬间转移到这个村庄,然后可以任意在地图的道路上行走,若走到某个村庄中有宝物,则视为找到该村庄内的宝物,直到找到所有宝物并返回到最初转移到的村庄为止.小B希望评测一下这个游戏的难度,因此他需要知道玩家找到所有宝物需要行走的最短路程.但是这个游戏中宝物经常变化,有时某个村庄中会突然出现宝物,有时某个村庄内的宝物会突然消失,因此小

[SDOI2015]寻宝游戏

寻宝游戏 对于dfs序的理解.好题!题目传送门 Description 小B最近正在玩一个寻宝游戏,这个游戏的地图中有N个村庄和N-1条道路,并且任何两个村庄之间有且仅有一条路径可达.游戏开始时,玩家可以任意选择一个村庄,瞬间转移到这个村庄,然后可以任意在地图的道路上行走,若走到某个村庄中有宝物,则视为找到该村庄内的宝物,直到找到所有宝物并返回到最初转移到的村庄为止.小B希望评测一下这个游戏的难度,因此他需要知道玩家找到所有宝物需要行走的最短路程.但是这个游戏中宝物经常变化,有时某个村庄中会突然

[BZOJ3991][SDOI2015]寻宝游戏

睡前写题解.此题Pascal党有难度max的buff……毕竟C++有set这种黑科技,P党只好手写平衡树.然而这还不是最主要的,最大的代码难点在于此题有奇怪的边界处理,加了一堆特判,用封好的set大概会清晰很多. 脑补一下就会发现答案就是所有被选中的点所构成的虚树的边权和的两倍,走路的过程就是在虚树上dfs的过程.这样我们可以把原树先dfs一遍,在虚树中dfs的时候访问关键点的先后顺序与原树中dfs是一致的,这样我们对于一些关键点可以把它们按照dfs序从前往后排,由第一个点开始走,一个一个往后依