SPSS数据分析—非线性回归

线性回归的首要满足条件是因变量与自变量之间呈线性关系,之后的拟合算法也是基于此,但是如果碰到因变量与自变量呈非线性关系的话,就需要使用非线性回归进行分析。

SPSS中的非线性回归有两个过程可以调用,一个是分析—回归—曲线估计,另一个是分析—回归—非线性,两种过程的思路不同,这也是非线性回归的两种分析方法,前者是通过变量转换,将曲线线性化,再使用线性回归进行拟合;后者则是直接按照非线性模型进行拟合。

我们按照两种方法分别拟合同一组数据,将结果进行比较。

分析—回归—曲线估计


变量转换的方法简单易行,在某些情况下是首选,但是只能拟合比较简单的(选项中有的)非线性关系,并且该方法存在一定的缺陷,例如

1.通过变量转换使用最小二乘法拟合的结果,再变换回原值之后不一定是最优解,并且变量转换也可能会改变残差的分布和独立性等性质。
2.曲线关系复杂时,无法通过变量转换进行直线化
3.曲线直线化之后,只能通过最小二乘法进行拟合,其他拟合方法无法实现

基于以上问题,非线性回归模型可以很好的解决,它和线性回归模型一样,也提出一个基本模型框架,所不同的是模型中的期望函数可以为任意形式,甚至没有表达式,在参数估计上,由于是曲线,无法直接使用最小二乘法进行估计,需要使用高斯-牛顿法进行估计,这一方法比较依赖于初始值的设定。

下面我们来直接按照非线性模型进行拟合,看看结果如何

分析—回归—非线性


以上用了两种方差进行拟合,从决定系数来看似乎非线性回归更好一点,但是要注意的是,曲线回归计算出的决定系数是变量转换之后的,并不一定能代表变换之前的变异解释程度,这也说明二者的决定系数不一定可比。我们可以通过两种方法计算出的预测值与残差图进行比较来判断优劣,首先将相关结果保存为变量,再做图


时间: 2024-10-07 08:14:14

SPSS数据分析—非线性回归的相关文章

快速掌握SPSS数据分析

SPSS难吗?无非就是数据类型的区别后,就能理解应该用什么样的分析方法,对应着分析方法无非是找一些参考资料进行即可.甚至在线网页SPSS软件直接可以将数据分析结果指标人工智能地分析出来,这有多难呢?本文章将周老师(统计学专家)8年的数据分析经验浓缩,便于让不会数据分析的同学,在学习数据分析的过程中可以少走弯路,树立数据分析价值观,以及以数据进行决策的思维意识,并且可以快速的掌握数据分析.本文章分为四个板块进行说明,一是数据分析思维的培养.二是数据间的几类关系情况.三是数据分析方法的选择.四是数据

SPSS数据分析—多维尺度分析

在市场研究中,有一种分析是研究消费者态度或偏好,收集的数据是某些对象的评分数据,这些评分数据可以看做是对象间相似性或差异性的表现,也就是一种距离,距离近的差异性小,距离远的差异性大.而我们的分析目的也是想查看这些对象间的差异性或相似性情况,此时由于数据的组成形式不一样,因此不能使用对应分析,而需要使用一种专门分析此问题的方法——多维尺度分析(MDS模型).多维尺度分析和对应分析类似,也是通过可视化的图形阐述结果,并且也是一种描述性.探索性数据分析方法. 基于以上,我们可以得知,多维尺度分析经常使

SPSS数据分析—分段回归

在SPSS非线性回归过程中,我们讲到了损失函数按钮可以自定义损失函数,但是还有一个约束按钮没有讲到,该按钮的功能是对自 定义的损失函数的参数设定条件,这些条件通常是由逻辑表达式组成,这就使得损失函数具有一定的判断能力. 该功能的主要作用是进行分段回归,有些时候,变量间的关系并非一成不变,而是具有某种阶段性特征,如果我们对每个阶段单独 进行拟合的话,会造成参数较多,无法从整体上把握问题实质,并且样本也被分割成多个,会影响精度,而使用非线性回归的定义 约束条件,就可以使用一个模型表达式拟合各个阶段,

SPSS数据分析—配对Logistic回归模型

Lofistic回归模型也可以用于配对资料,但是其分析方法和操作方法均与之前介绍的不同,具体表现 在以下几个方面1.每个配对组共有同一个回归参数,也就是说协变量在不同配对组中的作用相同2.常数项随着配对组变化而变化,反映了非实验因素在配对组中的作用,但是我们并不关心其大小, 因此在拟合时采用条件似然函数代替了一般似然函数,从而在拟合中消去了反映层因素的参数. SPSS中没有直接拟合配对Logistic回归模型的过程,需要对数据进行一些处理,采用其他方法进行拟合,拟合方法有变量差值拟合和COX模型

SPSS数据分析—判别分析

判别分析作为一种多元分析技术应用相当广泛,和其他多元分析技术不同,判别分析并没有将降维作为主要任务,而是通过建立判别函数来概括各维度之间的差异,并且根据这个判别函数,将新加入的未知类别的样本进行归类,从这个角度讲,判别分析是从另一个角度对数据进行归类. 判别分析由于要建立判别函数,因此和回归分析类似,也有因变量和自变量,并且因变量应为分类变量,这样才能够最终将数据进行归类,而自变量可以是任意尺度变量,分类变量需要设置为哑变量. 既然和回归分析类似,那么判断分析也有一定的适用条件,这些适用条件也和

SPSS数据分析—主成分分析

我们在分析问题的时候,为了准确全面的反映问题,常常收集很多变量,这些变量之间往往具有相关性,导致存在大量的重复信息,直接使用的话,不但模型非常复杂,而且所引起的共线性问题会使模型准确度降低. 对此,我们经常使用主成分分析对数据进行处理,主成分分析是考察多变量间相关性的一种多元统计分析方法,基本思想是:既然变量很多并且之间存在相关性,那么我们就将其压缩合并,通过统计分析方法将多个变量结合成少数几个有代表性的主成分,这些主成分携带了原始变量的绝大部分信息,并且之间互不相关. 有时,我们提取主成分并不

SPSS数据分析—信度分析

测量最常用的是使用问卷调查.信度分析主要就是分析问卷测量结果的稳定性,如果多次重复测量的结果都很接近,就可以认为测量的信度是高的.与信度相对应的概念是效度,效度是指测量值和真实值的接近程度.二者的区别是:信度只是描述测量工具的准确性,而效度描述测量工具的有效性,效度高信度一定高(有效一定准确),而信度高,效度不一定高(准确不一定有效) 基于信度分析而产生的测量理论分为两种,一种是真分数测量理论,另一种是概化理论真分数理论认为信度可以用以下公式表达:X=T+E,X为实测分数,T为真分数,E为随机误

SPSS数据分析—最小一乘法

线性回归最常用的是以最小二乘法作为拟合方法,但是该方法比较容易受到强影响点的影响,因此我们在拟合线性回归模型时,也将强影响点作为要考虑的条件.对于强影响点,在无法更正或删除的情况下,需要改用更稳健的拟合方法,最小一乘法就是解决此类问题的方法. 最小二乘法由于采用的是残差平方和,而强影响点的残差通常会比较大,在平方之后会更大,而最小一乘法不使用平方和而采用绝对值之和,因此对于强影响点的残差来说,其影响会小很多. 我们通过一个例子来比较当强影响点出现时,最小二乘法和最小一乘法的拟合效果,在SPSS中

SPSS数据分析—多重线性回归

只有一个自变量和因变量的线性回归称为简单线性回归,但是实际上,这样单纯的关系在现实世界中几乎不存在,万事万物都是互相联系的,一个问题的产生必定多种因素共同作用的结果. 对于有多个自变量和一个因变量的线性回归称为多重线性回归,有的资料上称为多元线性回归,但我认为多元的意思应该是真的因变量而非自变量的,而且多重共线性这个说法,也是针对多个自变量产生的,因此我还是赞同叫做多重线性回归. 多重线性回归是适用条件和简单线性回归类似,也是自变量与因变量之间存在线性关系.残差相互独立.残差方差齐性,残差呈正态