3301: [USACO2011 Feb] Cow Line

3301: [USACO2011 Feb] Cow Line

Time Limit: 10 Sec  Memory Limit: 128 MB
Submit: 82  Solved: 49
[Submit][Status][Discuss]

Description

The N (1 <= N <= 20) cows conveniently numbered 1...N are playing 
yet another one of their crazy games with Farmer John. The cows 
will arrange themselves in a line and ask Farmer John what their 
line number is. In return, Farmer John can give them a line number 
and the cows must rearrange themselves into that line. 
A line number is assigned by numbering all the permutations of the 
line in lexicographic order.

Consider this example: 
Farmer John has 5 cows and gives them the line number of 3. 
The permutations of the line in ascending lexicographic order: 
1st: 1 2 3 4 5 
2nd: 1 2 3 5 4 
3rd: 1 2 4 3 5 
Therefore, the cows will line themselves in the cow line 1 2 4 3 5.

The cows, in return, line themselves in the configuration "1 2 5 3 4" and 
ask Farmer John what their line number is.

Continuing with the list: 
4th : 1 2 4 5 3 
5th : 1 2 5 3 4 
Farmer John can see the answer here is 5

Farmer John and the cows would like your help to play their game. 
They have K (1 <= K <= 10,000) queries that they need help with. 
Query i has two parts: C_i will be the command, which is either ‘P‘ 
or ‘Q‘.

If C_i is ‘P‘, then the second part of the query will be one integer 
A_i (1 <= A_i <= N!), which is a line number. This is Farmer John 
challenging the cows to line up in the correct cow line.

If C_i is ‘Q‘, then the second part of the query will be N distinct 
integers B_ij (1 <= B_ij <= N). This will denote a cow line. These are the 
cows challenging Farmer John to find their line number.

有N头牛,分别用1……N表示,排成一行。 
将N头牛,所有可能的排列方式,按字典顺序从小到大排列起来。 
例如:有5头牛 
1st: 1 2 3 4 5 
2nd: 1 2 3 5 4 
3rd: 1 2 4 3 5 
4th : 1 2 4 5 3 
5th : 1 2 5 3 4 
…… 
现在,已知N头牛的排列方式,求这种排列方式的行号。 
或者已知行号,求牛的排列方式。 
所谓行号,是指在N头牛所有可能排列方式,按字典顺序从大到小排列后,某一特定排列方式所在行的编号。 
如果,行号是3,则排列方式为1 2 4 3 5 
如果,排列方式是 1 2 5 3 4 则行号为5

有K次问答,第i次问答的类型,由C_i来指明,C_i要么是‘P’要么是‘Q’。 
当C_i为P时,将提供行号,让你答牛的排列方式。当C_i为Q时,将告诉你牛的排列方式,让你答行号。

Input

* Line 1: Two space-separated integers: N and K 
* Lines 2..2*K+1: Line 2*i and 2*i+1 will contain a single query. 
Line 2*i will contain just one character: ‘Q‘ if the cows are lining 
up and asking Farmer John for their line number or ‘P‘ if Farmer 
John gives the cows a line number.

If the line 2*i is ‘Q‘, then line 2*i+1 will contain N space-separated 
integers B_ij which represent the cow line. If the line 2*i is ‘P‘, 
then line 2*i+1 will contain a single integer A_i which is the line 
number to solve for.

第1行:N和K 
第2至2*K+1行:Line2*i ,一个字符‘P’或‘Q’,指明类型。 
如果Line2*i是P,则Line2*i+1,是一个整数,表示行号; 
如果Line2*i+1 是Q ,则Line2+i,是N个空格隔开的整数,表示牛的排列方式。

Output

* Lines 1..K: Line i will contain the answer to query i.

If line 2*i of the input was ‘Q‘, then this line will contain a 
single integer, which is the line number of the cow line in line 
2*i+1.

If line 2*i of the input was ‘P‘, then this line will contain N 
space separated integers giving the cow line of the number in line 
2*i+1. 
第1至K行:如果输入Line2*i 是P,则输出牛的排列方式;如果输入Line2*i是Q,则输出行号

Sample Input

5 2
P
3
Q
1 2 5 3 4

Sample Output

1 2 4 3 5
5

HINT

Source

Silver

题解:这道题嘛。。。一开始想到的是生成法全排列,不过看N<=20,对于O(N!)的算法必挂无疑(生成法神马的感觉立刻让我回到小学的时光啊有木有,事实上小学时用QB跑全排列时N=12就已经需要相当长的时间了)

本题我在某某地方看到了一个新的很神奇的算法——康托展开(传送门在此,具体算法在此处不再赘述),于是开始瞎搞,一开始Q类问题求出初始序列后还弄了个树状数组进行维护,再看到N<=20时立刻感觉自己膝盖上中了来自USACO的鄙视之箭,于是P类询问我也开始暴力模拟,反正才N<=20,只要不真的瞎写都问题不大的

 1 /**************************************************************
 2     Problem: 3301
 3     User: HansBug
 4     Language: Pascal
 5     Result: Accepted
 6     Time:192 ms
 7     Memory:228 kb
 8 ****************************************************************/
 9
10 var
11    list:array[0..20] of int64;
12    i,j,k,l,m,n:longint;
13    a1,a2,a3,a4,a5:int64;
14    a,b,c,d:array[0..100] of int64;
15    ch:char;
16 procedure add(x:longint);
17           begin
18                if x=0 then exit;
19                while x<=n do
20                      begin
21                           inc(c[x]);
22                           inc(x,x and -x);
23                      end;
24           end;
25 function sum(x:longint):int64;
26          begin
27               if x=0 then exit(0);
28               sum:=0;
29               while x>0 do
30                     begin
31                          inc(sum,c[x]);
32                          dec(x,x and -x)
33                     end;
34          end;
35 begin
36      list[0]:=1;
37      for i:=1 to 20 do list[i]:=list[i-1]*i;
38      readln(n,m);
39      for i:=1 to m do
40          begin
41               readln(ch);
42               case upcase(ch) of
43                    ‘P‘:begin
44                             readln(a1);
45                             a1:=a1-1;
46                             for j:=1 to n do
47                                 begin
48                                      a[j]:=a1 div list[n-j];
49                                      a1:=a1 mod list[n-j];
50                                 end;
51                             fillchar(c,sizeof(c),0);
52                             for j:=1 to n do
53                                 begin
54                                      l:=0;
55                                      for k:=1 to n do
56                                          begin
57                                               if c[k]=1 then continue;
58                                               if a[j]=l then
59                                                  begin
60                                                       d[j]:=k;
61                                                       c[k]:=1;
62                                                  end;
63                                               inc(l);
64                                          end;
65                                 end;
66                             for j:=1 to n do if j<n then write(d[j],‘ ‘) else writeln(d[j]);
67                    end;
68                    ‘Q‘:begin
69                             for j:=1 to n do read(b[j]);
70                             readln;a1:=0;
71                             fillchar(c,sizeof(c),0);
72                             for j:=1 to n do
73                                 begin
74                                      add(b[j]);
75                                      inc(a1,(b[j]-sum(b[j]))*list[n-j]);
76                                 end;
77                             writeln(a1+1);
78                    end;
79               end;
80          end;
81 end.        
时间: 2024-10-10 08:46:54

3301: [USACO2011 Feb] Cow Line的相关文章

bzoj3301: [USACO2011 Feb] Cow Line

新姿势康托展开.. ------------------------------------ 裸的康托展开&逆康托展开 康托展开就是一种特殊的hash,且是可逆的-- 康托展开计算的是有多少种排列的字典序比这个小,所以编号应该+1:逆运算同理(-1). 序列->序号:(康托展开) 对于每个数a[i],数比它小的数有多少个在它之前没出现,记为b[i],ans=1+∑b[i]?(n?i)!ans=1+∑b[i]?(n?i)! 序号->序列:(逆康托展开) 求第x个排列所对应的序列,先将x-

【BZOJ】【3301】【USACO2011 Feb】Cow Line

康托展开 裸的康托展开&逆康托展开 康托展开就是一种特殊的hash,且是可逆的…… 序列->序号:(康托展开) 对于每个数a[i],数比它小的数有多少个在它之前没出现,记为b[i],$ans=1+\sum b[i]* (n-i)!$ 序号->序列:(逆康托展开) 求第x个排列所对应的序列,先将x-1,然后对于a[i],$\left\floor \frac{x}{(n-i)!} \right\floor $即为在它之后出现的比它小的数的个数,所以从小到大数一下有几个没出现的数,就知道a[

BZOJ3300: [USACO2011 Feb]Best Parenthesis

3300: [USACO2011 Feb]Best Parenthesis Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 89  Solved: 42[Submit][Status] Description Recently, the cows have been competing with strings of balanced parentheses and comparing them with each other to see who

[USACO11FEB] Cow Line

https://www.luogu.org/problem/show?pid=3014 题目描述 The N (1 <= N <= 20) cows conveniently numbered 1...N are playing yet another one of their crazy games with Farmer John. The cows will arrange themselves in a line and ask Farmer John what their line

bzoj1640[Usaco2007 Nov]Best Cow Line 队列变换*&amp;&amp;bzoj1692[Usaco2007 Dec]队列变换*

bzoj1640[Usaco2007 Nov]Best Cow Line 队列变换 bzoj1692[Usaco2007 Dec]队列变换 题意: 有一个奶牛队列.每次可以在原来队列的首端或是尾端牵出一头奶牛,把她安排到新队列的尾部,然后对剩余的奶牛队列重复以上的操作,直到所有奶牛都被插到了新的队列里.这样得到的队列,就是FJ拉去登记的最终的奶牛队列. 求对于给定的奶牛们的初始位置,计算出可能得到的字典序最小的队列.队列大小≤30000. 题解: 有一个结论:如果当前队列中的队首元素不等于队尾元

3403: [Usaco2009 Open]Cow Line 直线上的牛

3403: [Usaco2009 Open]Cow Line 直线上的牛 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 71  Solved: 62[Submit][Status] Description 题目描述 约翰的N只奶牛(编为1到N号)正在直线上排队.直线上开始的时候一只牛也没有.接下来发生了S(1≤S≤100000)次事件,一次事件可能是以下四种情况之一: .一只奶牛加入队伍的左边(输入“AL”). .一只奶牛加入队伍的右边(输入“AR

1640: [Usaco2007 Nov]Best Cow Line 队列变换

1640: [Usaco2007 Nov]Best Cow Line 队列变换 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 543  Solved: 278[Submit][Status] Description FJ打算带着他可爱的N (1 ≤ N ≤ 2,000)头奶牛去参加”年度最佳老农”的比赛.在比赛中,每个农夫把他的奶牛排成一列,然后准备经过评委检验. 比赛中简单地将奶牛的名字缩写为其头字母(the initial letter of e

[BZOJ1697][Usaco2007 Feb]Cow Sorting牛排序

1697: [Usaco2007 Feb]Cow Sorting牛排序 Time Limit: 5 Sec  Memory Limit: 64 MB Submit: 712  Solved: 416 [Submit][Status][Discuss] Description 农夫JOHN准备把他的 N(1 <= N <= 10,000)头牛排队以便于行动.因为脾气大的牛有可能会捣乱,JOHN想把牛按脾气的大小排序.每一头牛的脾气都是一个在1到100,000之间的整数并且没有两头牛的脾气值相同.

[BZOJ] 1631: [Usaco2007 Feb]Cow Party

1631: [Usaco2007 Feb]Cow Party Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 866  Solved: 624[Submit][Status][Discuss] Description 农场有N(1≤N≤1000)个牛棚,每个牛棚都有1只奶牛要参加在X牛棚举行的奶牛派对.共有M(1≤M≤100000)条单向路连接着牛棚,第i条踣需要Ti的时间来通过.牛们都很懒,所以不管是前去X牛棚参加派对还是返回住所,她们都采用了用时最