什么是阶乘

阶乘是基斯顿·卡曼(Christian Kramp,1760~1826)于 1808 年发明的运算符号,是数学术语。

一个正整数的阶乘(英语:factorial)是所有小于及等于该数的正整数,并且有0的阶乘为1。自然数n的阶乘写作n!。1808年,基斯顿·卡曼引进这个表示法。

亦即n!=1×2×3×...×n。阶乘亦可以递归方式定义:0!=1,n!=(n-1)!×n。

阶乘的计算方法 阶乘指从1乘以2乘以3乘以4一直乘到所要求的数。 例如所要求的数是4,则阶乘式是1×2×3×4,得到的积是24,24就是4的阶乘。 例如所要求的数是6,则阶乘式是1×2×3×..×6,得到的积是720,720就是6的阶乘。例如所要求的数是n,则阶乘式是1×2×3×…×n,设得到的积是x,x就是n的阶乘。 

阶乘的表示方法 在表达阶乘时,就使用“!”来表示。如x的阶乘,就表示为x! 

他的原理就是反推,如,举例,求10的阶乘=10*9的阶乘(以后用!表示阶乘)那么9!=?,9!=9*8!,8!=8*7!,7!=7*6!,6!=6*5!,5!=5*4!,4!=4*3!, 3!=3*2!,2!=2*1!,1的阶乘是多少呢?是1 1!=1*1,数学家规定,0!=1,所以0!=1!然后在往前推算,公式为n!(n!为当前数所求的阶乘)=n(当前数)*(n-1)!(比他少一的一个数N-1的阶乘把公式列出来像后推,只有1的!为1,所以要从1开始,要知道3!要知道2!就要知道1!但必须从1!开始推算所以要像后推,如果遍程序算法可以此公式用一个函数解决,并且嵌套调用次函数,,)把数带入公式为, 1!=1*1 2!=2*1(1!) 3!=3*2(2!) 4=4*6(3!),如果要是编程,怎么解决公式问题呢 首先定义算法 //算法,1,定义函数,求阶乘,定义函数fun,参数值n,(#include <stdio.h> long fun(int n ) //long 为长整型,因20!就很大了超过了兆亿 (数学家定义数学家定义,0!=1,所以0!=1!,0与1的阶乘没有实际意义) 2,函数体判断,如果这个数大于1,则执行if(n>1)(往回退算,这个数是10求它!,要从2的阶乘值开始,所以执行公式的次数定义为9,特别需要注意的是此处,当前第一次写入代码执行,已经算一次) 求这个数的n阶乘(公式为,n!=n*(n-1)!,并且反回一个值, return (n*(fun(n-1));(这个公式为,首先这个公式求的是10的阶乘,但是求10的阶乘就需要,9的阶乘,9的阶乘我们不知道,所以就把10减1,也就是n-1做为一个新的阶乘,从新调用fun函数,求它的阶乘然后在把这个值返回到 fun(n-1),然后执行n*它返回的值,其实这个公式就是调用fun函数的结果,函数值为return 返回的值,(n-1)为参数依次类推,...一值嵌套调用fun函数, 到把n-1的值=1, 注意:此时已经运行9次fun()函数算第一次运行,,调用几次fun函数呢?8次函数,所以,n-1执行了9次,n-1=1 ,n=2已经调用就可以求2乘阶值
时间: 2024-10-13 10:36:17

什么是阶乘的相关文章

算法-计算阶乘n!末尾0的个数

算法逻辑转载自计算阶乘n!末尾0的个数: 问题描述    给定参数n(n为正整数),请计算n的阶乘n!末尾所含有"0"的个数.    例如,5!=120,其末尾所含有的"0"的个数为1:10!= 3628800,其末尾所含有的"0"的个数为2:20!= 2432902008176640000,其末尾所含有的"0"的个数为4. 计算公式    这里先给出其计算公式,后面给出推导过程.    令f(x)表示正整数x末尾所含有的&q

1003 阶乘后面0的数量

1003 阶乘后面0的数量 基准时间限制:1 秒 空间限制:131072 KB 分值: 5 难度:1级算法题 n的阶乘后面有多少个0? 6的阶乘 = 1*2*3*4*5*6 = 720,720后面有1个0. Input 一个数N(1 <= N <= 10^9) Output 输出0的数量 Input示例 5 Output示例 1其实只要循环除五就可以找到规律,其实也可以证明出来. 1 #include <iostream> 2 #include <cstdio> 3 #

高精度运算-阶乘累积求和

# include <stdio.h> # include <math.h> # define N 66 int main(){ int s[N] = {0}, a[N] = {0};// s累加和,a累积求阶乘 int i,j,k,n,digit=1; //digit代表的是数字的位数 scanf("%d",&n); a[0]=1; s[0]=1; if(n==1)// 如果是1,阶乘和就是1,直接输出 printf("%d",s[

关于阶乘

描述:给定两个数n,m,其中m是一个素数. 将n(0<=n<=2^31)的阶乘分解质因数,求其中有多少个m. 注:^为求幂符号. 输入: 第一行是一个整数s(0<s<=100),表示测试数据的组数 随后的s行, 每行有两个整数n,m. 输出: 输出m的个数 样例输入 3 100 5 16 2 1000000000 13 样例输出 24 15 83333329 当n,m体量很小的时候,用这个代码就可以AC: 1 #include <iostream> 2 using na

XDU1019 阶乘因子的个数

题意是让你求一个最小的N, 使得N!有M个0,N的阶乘中2的因子是远多于5的因子的个数, 因此我们统计出5的个数就知道其后面有几个0,对于一个数mid, mid!中5的因子的个数为mid/5 + mid/25 + mid/5^3 + ... 可以发现mid越大mid!中的5的个数越多, 因此我们可以二分答案, 代码如下: #include <cstdio> #include <cstring> #include <algorithm> #include <iost

阶乘的精确值

问题描述:输入不超过1000的正整数,输出n!=1*2*3*...*n的结果 1000!约等于4*10^2567 所以设置数组的最大范围为3000 并采用逆序表示 eg: 123000  因为是逆序 所以输出321 1.java import java.util.Arrays; import java.util.Scanner;/** * 阶乘的精确值 * @author NEU-2015 * */ public class Demo { public static void main(Stri

51nod 1435 位数阶乘

1435 位数阶乘 题目来源: CodeForces 基准时间限制:1 秒 空间限制:131072 KB 分值: 40 难度:4级算法题  收藏  关注 X是一个n位数的正整数 (x=a0a1...an−1) 现在定义 F(x)=∏i=0n−1(ai!)  , 比如F(135)=1!*3!*5!=720. 我们给定一个n位数的整数X(至少有一位数大于1,X中可能有前导0), 然后我们去找一个正整数(s)符合以下条件: 1.这个数尽可能大, 2.这个数中不能含有数字0或1. 3.F(s)=F(x)

4.n的高精度阶乘---优化

题目:对于每组测试数据,在一行中给出一非负整数n(n小于等于100) 样例输入 3 5 10 样例输出 6 120 3628800 超时的代码如下:#include <iostream>#include <cstring>using namespace std; int main(){    int n, count = 0;    int a[100] = {1};    cin >> n;    if(n == 0){        cout << 1;

【51NOD-0】1058 N的阶乘的长度

[算法]数学 [题解]n!的位数相当于ans=log10(n!)上取整,然后就可以拆出来加了. 可以用log10(i)或log(i)/log(10) 阶乘好像有个斯特林公式-- #include<cstdio> #include<cmath> using namespace std; int main() { int n; scanf("%d",&n); long double ans=0; for(int i=1;i<=n;i++)ans+=lo

题目1067:n的阶乘--------long long int

此题不难,关键是20的阶乘是long long int 型的,这点需要注意! AC不用递归的代码: #include<iostream> using namespace std; int main() { int n; long long int res=1; while(cin>>n) { int i=1; res=1;; for (i=1;i<n+1;i++) res=res*i; cout<<res<<endl; } return 0; } AC