Python 中的闭包

今天有同事说道闭包,查了下Python中的闭包,看到下面这边文字,记录备查:

闭包这个概念在很多语言中都有涉及,本文主要谈谈python中的闭包。Python中使用闭包主要是在进行函数式开发时使用。

一,定义

python中的闭包从表现形式上定义(解释)为:如果在一个内部函数里,对在外部作用域(但不是在全局作用域)的变量进行引用,那么内部函数就被认为是闭包(closure).这个定义是相对直白的,好理解的,不像其他定义那样学究味道十足(那些学究味道重的解释,在对一个名词的解释过程中又充满了一堆让人抓狂的其他陌生名词,不适合初学者)。下面举一个简单的例子来说明。

>>>def addx(x):
>>>    def adder(y): return x + y
>>>    return adder
>>> c =  addx(8)
>>> type(c)
<type ‘function‘>
>>> c.__name__
‘adder‘
>>> c(10)
18

结合这段简单的代码和定义来说明闭包:

如果在一个内部函数里:adder(y)就是这个内部函数,

对在外部作用域(但不是在全局作用域)的变量进行引用:x就是被引用的变量,x在外部作用域addx里面,但不在全局作用域里,

则这个内部函数adder就是一个闭包。

再稍微讲究一点的解释是,闭包=函数块+定义函数时的环境,adder就是函数块,x就是环境,当然这个环境可以有很多,不止一个简单的x。

二,使用闭包注意事项

1,闭包中是不能修改外部作用域的局部变量的

>>> def foo():
...     m = 0
...     def foo1():
...         m = 1
...         print m
...
...     print m
...     foo1()
...     print m
...
>>> foo()
0
1
0

从执行结果可以看出,虽然在闭包里面也定义了一个变量m,但是其不会改变外部函数中的局部变量m。

2,以下这段代码是在python中使用闭包时一段经典的错误代码

def foo():
    a = 1
    def bar():
        a = a + 1
        return a
    return bar

这段程序的本意是要通过在每次调用闭包函数时都对变量a进行递增的操作。但在实际使用时

>>> c = foo()
>>> print c()
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "<stdin>", line 4, in bar
UnboundLocalError: local variable ‘a‘ referenced before assignment

这是因为在执行代码 c = foo()时,python会导入全部的闭包函数体bar()来分析其的局部变量,python规则指定所有在赋值语句左面的变量都是局部变量,则在闭包bar()中,变量a在赋值符号"="的左面,被python认为是bar()中的局部变量。再接下来执行print c()时,程序运行至a = a + 1时,因为先前已经把a归为bar()中的局部变量,所以python会在bar()中去找在赋值语句右面的a的值,结果找不到,就会报错。解决的方法很简单

def foo():
    a = [1]
    def bar():
        a[0] = a[0] + 1
        return a[0]
    return bar

只要将a设定为一个容器就可以了。这样使用起来多少有点不爽,所以在python3以后,在a = a + 1 之前,使用语句nonloacal a就可以了,该语句显式的指定a不是闭包的局部变量。

3,还有一个容易产生错误的事例也经常被人在介绍python闭包时提起,我一直都没觉得这个错误和闭包有什么太大的关系,但是它倒是的确是在python函数式编程是容易犯的一个错误,我在这里也不妨介绍一下。先看下面这段代码

for i in range(3):
    print i

在程序里面经常会出现这类的循环语句,Python的问题就在于,当循环结束以后,循环体中的临时变量i不会销毁,而是继续存在于执行环境中。还有一个python的现象是,python的函数只有在执行时,才会去找函数体里的变量的值。

flist = []
for i in range(3):
    def foo(x): print x + i
    flist.append(foo)
for f in flist:
    f(2)

可能有些人认为这段代码的执行结果应该是2,3,4.但是实际的结果是4,4,4。这是因为当把函数加入flist列表里时,python还没有给i赋值,只有当执行时,再去找i的值是什么,这时在第一个for循环结束以后,i的值是2,所以以上代码的执行结果是4,4,4.

解决方法也很简单,改写一下函数的定义就可以了。

for i in range(3):
    def foo(x,y=i): print x + y
    flist.append(foo)

三,作用

说了这么多,不免有人要问,那这个闭包在实际的开发中有什么用呢?闭包主要是在函数式开发过程中使用。以下介绍两种闭包主要的用途。

用途1,当闭包执行完后,仍然能够保持住当前的运行环境。

比如说,如果你希望函数的每次执行结果,都是基于这个函数上次的运行结果。我以一个类似棋盘游戏的例子来说明。假设棋盘大小为50*50,左上角为坐标系原点(0,0),我需要一个函数,接收2个参数,分别为方向(direction),步长(step),该函数控制棋子的运动。棋子运动的新的坐标除了依赖于方向和步长以外,当然还要根据原来所处的坐标点,用闭包就可以保持住这个棋子原来所处的坐标。

origin = [0, 0]  # 坐标系统原点
legal_x = [0, 50]  # x轴方向的合法坐标
legal_y = [0, 50]  # y轴方向的合法坐标
def create(pos=origin):
    def player(direction,step):
        # 这里应该首先判断参数direction,step的合法性,比如direction不能斜着走,step不能为负等
        # 然后还要对新生成的x,y坐标的合法性进行判断处理,这里主要是想介绍闭包,就不详细写了。
        new_x = pos[0] + direction[0]*step
        new_y = pos[1] + direction[1]*step
        pos[0] = new_x
        pos[1] = new_y
        #注意!此处不能写成 pos = [new_x, new_y],原因在上文有说过
        return pos
    return player

player = create()  # 创建棋子player,起点为原点
print player([1,0],10)  # 向x轴正方向移动10步
print player([0,1],20)  # 向y轴正方向移动20步
print player([-1,0],10)  # 向x轴负方向移动10步

输出为

[10, 0]
[10, 20]
[0, 20]

用途2,闭包可以根据外部作用域的局部变量来得到不同的结果,这有点像一种类似配置功能的作用,我们可以修改外部的变量,闭包根据这个变量展现出不同的功能。比如有时我们需要对某些文件的特殊行进行分析,先要提取出这些特殊行。

def make_filter(keep):
    def the_filter(file_name):
        file = open(file_name)
        lines = file.readlines()
        file.close()
        filter_doc = [i for i in lines if keep in i]
        return filter_doc
    return the_filter

如果我们需要取得文件"result.txt"中含有"pass"关键字的行,则可以这样使用例子程序

filter = make_filter("pass")
filter_result = filter("result.txt")

以上两种使用场景,用面向对象也是可以很简单的实现的,但是在用Python进行函数式编程时,闭包对数据的持久化以及按配置产生不同的功能,是很有帮助的。

时间: 2024-10-09 16:14:30

Python 中的闭包的相关文章

21.python中的闭包和装饰器

python中的闭包从表现形式上定义(解释)为:如果在一个内部函数里,对在外部作用域(但不是在全局作用域)的变量进行引用,那么内部函数就被认为是闭包(closure). 以下说明主要针对 python2.7,其他版本可能存在差异. 也许直接看定义并不太能明白,下面我们先来看一下什么叫做内部函数: def wai_hanshu(canshu_1): def nei_hanshu(canshu_2): # 我在函数内部有定义了一个函数 return canshu_1*canshu_2 return

说说Python中的闭包 - Closure

转载自https://segmentfault.com/a/1190000007321972 Python中的闭包不是一个一说就能明白的概念,但是随着你往学习的深入,无论如何你都需要去了解这么一个东西. 闭包的概念 我们尝试从概念上去理解一下闭包. 在一些语言中,在函数中可以(嵌套)定义另一个函数时,如果内部的函数引用了外部的函数的变量,则可能产生闭包.闭包可以用来在一个函数与一组"私有"变量之间创建关联关系.在给定函数被多次调用的过程中,这些私有变量能够保持其持久性.-- 维基百科)

python中的闭包和装饰器

闭包函数介绍 什么是闭包 维基百科中关于闭包的概念: 在一些语言中,在函数中可以(嵌套)定义另一个函数时,如果内部的函数引用了外部的函数的变量,则可能产生闭包.闭包可以用来在一个函数与一组 "私有" 变量之间创建关联关系.在给定函数被多次调用的过程中,这些私有变量能够保持其持久性. 对上面这段话总结一下,即python中的闭包需要满足3个条件:1) 内嵌函数,即函数里定义了函数 -- 这对应函数之间的嵌套2) 内嵌函数必须引用定义在外部函数里中的变量(不是全局作用域中的引用)-- 内部

轻松理解python中的闭包和装饰器 (下)

在 上篇 我们讲了python将函数做为返回值和闭包的概念,下面我们继续讲解函数做参数和装饰器,这个功能相当方便实用,可以极大地简化代码,就让我们go on吧! 能接受函数做参数的函数我们称之为高阶函数,例如filter, map, reduce这些函数 可以定义一个函数作为高阶函数例如: def func(x, y, f): return f(x)+f(y) 可以这样调用func(2,-1,abs) 函数返回结果为3 有些时候,我们不需要显式地定义传入的函数,直接传入匿名函数更方便. 在Pyt

理解Python中的闭包

1.定义 闭包是函数式编程的一个重要的语法结构,函数式编程是一种编程范式 (而面向过程编程和面向对象编程也都是编程范式).在面向过程编程中,我们见到过函数(function):在面向对象编程中,我们见过对象(object).函数和对象的根本目的是以某种逻辑方式组织代码,并提高代码的可重复使用性(reusability).闭包也是一种组织代码的结构,它同样提高了代码的可重复使用性.  不同编程语言实现闭包的方式是不同的,python中闭包从表现形式上看,如果在一个内部函数里,对在外部作用域(但不是

Python中的闭包到底有什么用

1.global关键字的作用 如果在函数中需要修改全局变量,则需要使用该关键字,具体参见下面例子. variable=100 def function(): print(variable) #在函数内不对全局变量修改,直接访问是没问题的,不会报错 function() #输出100 variable=100 def function(): result=variable+111 print(result) #在函数内不对全局变量修改,直接使用是没问题的,不会报错 function() #输出21

转-python中的闭包

出处:http://www.cnblogs.com/ma6174/archive/2013/04/15/3022548.html 记录下 简单说,闭包就是根据不同的配置信息得到不同的结果 再来看看专业的解释:闭包(Closure)是词法闭包(Lexical Closure)的简称,是引用了自由变量的函数.这个被引用的自由变量将和这个函数一同存在,即使已经离开了创造它的环境也不例外.所以,有另一种说法认为闭包是由函数和与其相关的引用环境组合而成的实体. python实例 看概念总是让人摸不着头脑,

聊聊Python中的闭包和装饰器

1. 闭包 首先我们明确一下函数的引用,如下所示: def test1(): print("--- in test1 func----") # 调用函数 test1() # 引用函数 ret = test1 print(id(ret)) print(id(test1)) #通过引用调用函数 ret() 运行结果: --- in test1 func---- 140212571149040 140212571149040 --- in test1 func---- 以y=kx+b为例,请

Python中的闭包

简单的闭包的栗子: def counter(statr_at = 0): count = 1 def incr(): nonlocal count #注意由于count类型为immutable,所以需要声明清楚在此局部作用域内引用的是外部作用域那个count count += 1 return count return incr >>> count = counter(4) >>> count() 2 >>> count() 3 >>>