定时器的使用

定时器(Timer)在 Windows 的程序设计中很多地方都能用到,他的主要用途是按程序的设定间隔时间,间歇性的产生 WM_TIMER 消息,发送到指定窗口 之后,在窗口中对 WM_TIMER 消息进行处理,完成指定的任务!

①、定时器函数的讲解:

◆ 定时器启动函数:SetTimer

UINT SetTimer(

    UINT nIDEvent, //定时器标识              

    UINT nElapse,  //定时器间隔         

    void (CALLBACK EXPORT* lpfnTimer)(HWND, //定时器响应函数,NULL则默认OnTimer函数;

          UINT,

          UINT,

          DWORD)

);

◆ 定时器响应函数:OnTimer

afx_msg void OnTimer( UINT nIDEvent );

void CMFCTestDlg::OnTimer(UINT_PTR nIDEvent) {  

  // TODO: Add your message handler code here and/or calldefault

CDialog::OnTimer(nIDEvent);

}

◆ 定时器结束函数:KillTimer

KillTimer(TIME_ID);//TIME_ID 定时器的ID,销毁时器唯一的身份验证。

②、定时器的使用:

◆ 定义定时器常量:

#define ID_TIME1  1

#define ID_TIME2 2

◆ 设置启动定时器:

SetTimer(ID_TIME1,1000,0);
SetTimer(ID_TIME2,500,0);

◆ 定时器函数响应:

oid CMainFrame::OnTimer(UINT nIDEvent)
{
    // TODO: Add your message handler code here and/or call default
    switch(nIDEvent) {
    case ID_TIME1:
        {
            AfxMessageBox("定时器1!");
            break;
        }
   case ID_TIME2:
        {
            AfxMessageBox("定时器2!");
            break;
        }
    default:
        ;
 }

◆ 销毁定时器:

KillTimer(ID_TIME1);
KillTimer(ID_TIME2);

VC中基于 Windows 的精确定时  

在工业生产控制系统中,有许多需要定时完成的操作,如定时显示当前时间,定时刷新屏幕上的进度条,上位 机定时向下位机发送命令和传送数据等。特别是在对控制性能要求较高的实时控制系统和数据采集系统中,就更需要精确定时操作。
  众所周知,Windows 是基于消息机制的系统,任何事件的执行都是通过发送和接收消息来完成的。 这样就带来了一些问题,如一旦计算机的CPU被某个进程占用,或系统资源紧张时,发送到消息队列 中的消息就暂时被挂起,得不到实时处理。因此,不能简单地通过Windows消息引发一个对定时要求 严格的事件。另外,由于在Windows中已经封装了计算机底层硬件的访问,所以,要想通过直接利用 访问硬件来完成精确定时,也比较困难。所以在实际应用时,应针对具体定时精度的要求,采取相适 应的定时方法。
  VC中提供了很多关于时间操作的函数,利用它们控制程序能够精确地完成定时和计时操作。本文详细介绍了 VC中基于Windows的精确定时的七种方式,如下图所示:

方式一:VC中的WM_TIMER消息映射能进行简单的时间控制。首先调用函数SetTimer()设置定时 间隔,如SetTimer(0,200,NULL)即为设置200ms的时间间隔。然后在应用程序中增加定时响应函数 OnTimer(),并在该函数中添加响应的处理语句,用来完成到达定时时间的操作。这种定时方法非常 简单,可以实现一定的定时功能,但其定时功能如同Sleep()函数的延时功能一样,精度非常低,最小 计时精度仅为30ms,CPU占用低,且定时器消息在多任务操作系统中的优先级很低,不能得到及时响 应,往往不能满足实时控制环境下的应用。只可以用来实现诸如位图的动态显示等对定时精度要求不高的情况。如示例工程中的Timer1。   方式二:VC中使用sleep()函数实现延时,它的单位是ms,如延时2秒,用sleep(2000)。精度非常 低,最小计时精度仅为30ms,用sleep函数的不利处在于延时期间不能处理其他的消息,如果时间太 长,就好象死机一样,CPU占用率非常高,只能用于要求不高的延时程序中。如示例工程中的Timer2。   方式三:利用COleDateTime类和COleDateTimeSpan类结合WINDOWS的消息处理过程来实现秒级延时。如示例工程中的Timer3和Timer3_1。以下是实现2秒的延时代码:

      COleDateTime      start_time = COleDateTime::GetCurrentTime();
      COleDateTimeSpan  end_time= COleDateTime::GetCurrentTime()-start_time;
      while(end_time.GetTotalSeconds()< 2) //实现延时2秒
     {
              MSG   msg;
              GetMessage(&msg,NULL,0,0);
              TranslateMessage(&msg);
              DispatchMessage(&msg);

             //以上四行是实现在延时或定时期间能处理其他的消息,
       //虽然这样可以降低CPU的占有率,
             //但降低了延时或定时精度,实际应用中可以去掉。
             end_time = COleDateTime::GetCurrentTime()-start_time;
      }//这样在延时的时候我们也能够处理其他的消息。

  方式四:在精度要求较高的情况下,VC中可以利用GetTickCount()函数,该函数的返回值是  DWORD型,表示以ms为单位的计算机启动后经历的时间间隔。精度比WM_TIMER消息映射高,在较 短的定时中其计时误差为15ms,在较长的定时中其计时误差较低,如果定时时间太长,就好象死机一样,CPU占用率非常高,只能用于要求不高的延时程序中。如示例工程中的Timer4和Timer4_1。下列代码可以实现50ms的精确定时:

       DWORD dwStart = GetTickCount();
       DWORD dwEnd   = dwStart;
       do
       {
          dwEnd = GetTickCount()-dwStart;
       }while(dwEnd <50);

为使GetTickCount()函数在延时或定时期间能处理其他的消息,可以把代码改为:

       DWORD dwStart = GetTickCount();
       DWORD dwEnd   = dwStart;
       do
       {
              MSG   msg;
              GetMessage(&msg,NULL,0,0);
              TranslateMessage(&msg);
              DispatchMessage(&msg);
              dwEnd = GetTickCount()-dwStart;
       }while(dwEnd <50);

虽然这样可以降低CPU的占有率,并在延时或定时期间也能处理其他的消息,但降低了延时或定时精度。   方式五:与GetTickCount()函数类似的多媒体定时器函数DWORD timeGetTime(void),该函数定时精 度为ms级,返回从Windows启动开始经过的毫秒数。微软公司在其多媒体Windows中提供了精确定时器的底 层API持,利用多媒体定时器可以很精确地读出系统的当前时间,并且能在非常精确的时间间隔内完成一 个事件、函数或过程的调用。不同之处在于调用DWORD timeGetTime(void) 函数之前必须将 Winmm.lib  和 Mmsystem.h 添加到工程中,否则在编译时提示DWORD timeGetTime(void)函数未定义。由于使用该 函数是通过查询的方式进行定时控制的,所以,应该建立定时循环来进行定时事件的控制。如示例工程中的Timer5和Timer5_1。   方式六:使用多媒体定时器timeSetEvent()函数,该函数定时精度为ms级。利用该函数可以实现周期性的函数调用。如示例工程中的Timer6和Timer6_1。函数的原型如下:

       MMRESULT timeSetEvent( UINT uDelay,
                               UINT uResolution,
                               LPTIMECALLBACK lpTimeProc,
                               WORD dwUser,
                               UINT fuEvent )

  该函数设置一个定时回调事件,此事件可以是一个一次性事件或周期性事件。事件一旦被激活,便调用指定的回调函数, 成功后返回事件的标识符代码,否则返回NULL。函数的参数说明如下:

       uDelay:以毫秒指定事件的周期。
       Uresolution:以毫秒指定延时的精度,数值越小定时器事件分辨率越高。缺省值为1ms。
       LpTimeProc:指向一个回调函数。
       DwUser:存放用户提供的回调数据。
       FuEvent:指定定时器事件类型:
       TIME_ONESHOT:uDelay毫秒后只产生一次事件
       TIME_PERIODIC :每隔uDelay毫秒周期性地产生事件。      

  具体应用时,可以通过调用timeSetEvent()函数,将需要周期性执行的任务定义在LpTimeProc回调函数 中(如:定时采样、控制等),从而完成所需处理的事件。需要注意的是,任务处理的时间不能大于周期间隔时间。另外,在定时器使用完毕后, 应及时调用timeKillEvent()将之释放。   方式七:对于精确度要求更高的定时操作,则应该使用QueryPerformanceFrequency()和 QueryPerformanceCounter()函数。这两个函数是VC提供的仅供Windows 95及其后续版本使用的精确时间函数,并要求计算机从硬件上支持精确定时器。如示例工程中的Timer7、Timer7_1、Timer7_2、Timer7_3。 QueryPerformanceFrequency()函数和QueryPerformanceCounter()函数的原型如下:

      BOOL  QueryPerformanceFrequency(LARGE_INTEGER *lpFrequency);
      BOOL  QueryPerformanceCounter(LARGE_INTEGER *lpCount);

  数据类型ARGE_INTEGER既可以是一个8字节长的整型数,也可以是两个4字节长的整型数的联合结构, 其具体用法根据编译器是否支持64位而定。该类型的定义如下:

       typedef union _LARGE_INTEGER
       {
           struct
           {
              DWORD LowPart ;// 4字节整型数
              LONG  HighPart;// 4字节整型数
           };
           LONGLONG QuadPart ;// 8字节整型数

        }LARGE_INTEGER ;

  在进行定时之前,先调用QueryPerformanceFrequency()函数获得机器内部定时器的时钟频率, 然后在需要严格定时的事件发生之前和发生之后分别调用QueryPerformanceCounter()函数,利用两次获得的计数之差及时钟频率,计算出事件经 历的精确时间。下列代码实现1ms的精确定时:

       LARGE_INTEGER litmp;
       LONGLONG QPart1,QPart2;
       double dfMinus, dfFreq, dfTim;
       QueryPerformanceFrequency(&litmp);
       dfFreq = (double)litmp.QuadPart;// 获得计数器的时钟频率
       QueryPerformanceCounter(&litmp);
       QPart1 = litmp.QuadPart;// 获得初始值
       do
       {
          QueryPerformanceCounter(&litmp);
          QPart2 = litmp.QuadPart;//获得中止值
          dfMinus = (double)(QPart2-QPart1);
          dfTim = dfMinus / dfFreq;// 获得对应的时间值,单位为秒
       }while(dfTim<0.001);

  其定时误差不超过1微秒,精度与CPU等机器配置有关。 下面的程序用来测试函数Sleep(100)的精确持续时间:

       LARGE_INTEGER litmp;
       LONGLONG QPart1,QPart2;
       double dfMinus, dfFreq, dfTim;
       QueryPerformanceFrequency(&litmp);
       dfFreq = (double)litmp.QuadPart;// 获得计数器的时钟频率
       QueryPerformanceCounter(&litmp);
       QPart1 = litmp.QuadPart;// 获得初始值
       Sleep(100);
       QueryPerformanceCounter(&litmp);
       QPart2 = litmp.QuadPart;//获得中止值
       dfMinus = (double)(QPart2-QPart1);
       dfTim = dfMinus / dfFreq;// 获得对应的时间值,单位为秒

  由于Sleep()函数自身的误差,上述程序每次执行的结果都会有微小误差。下列代码实现1微秒的精确定时:

       LARGE_INTEGER litmp;
       LONGLONG QPart1,QPart2;
       double dfMinus, dfFreq, dfTim;
       QueryPerformanceFrequency(&litmp);
       dfFreq = (double)litmp.QuadPart;// 获得计数器的时钟频率
       QueryPerformanceCounter(&litmp);
       QPart1 = litmp.QuadPart;// 获得初始值
       do
       {
          QueryPerformanceCounter(&litmp);
          QPart2 = litmp.QuadPart;//获得中止值
          dfMinus = (double)(QPart2-QPart1);
          dfTim = dfMinus / dfFreq;// 获得对应的时间值,单位为秒
       }while(dfTim<0.000001);

其定时误差一般不超过0.5微秒,精度与CPU等机器配置有关。(完)

转载:http://www.cnblogs.com/szjoin/archive/2004/11/26/69346.html

时间: 2024-10-24 00:20:50

定时器的使用的相关文章

Android零基础入门第60节:日历视图CalendarView和定时器Chronometer

原文:Android零基础入门第60节:日历视图CalendarView和定时器Chronometer 上一期学习了AnalogClock.DigitalClock和TextClock时钟组件,本期继续来学习日历视图CalendarView和定时器Chronometer. 一.CalendarView 日历视图(CalendarView)可用于显示和选择日期,用户既可选择一个日期,也可通过触 摸来滚动日历.如果希望监控该组件的日期改变,则可调用CalendarView的 setOnDateCha

发送短信验证码按钮 定时器

static int i = 29; @property(nonatomic,strong) NSTimer *timmer;//定时器 - (void)sendNumber{ NSLog(@"发送验证码"); self.getTelephoneCodeBtn.enabled = NO; [self.getTelephoneCodeBtn setTitle:@"已发送" forState:UIControlStateDisabled]; [self.getTelep

《TCP/IP具体解释》读书笔记(22章)-TCP的坚持定时器

TCP通过让接收方指明希望从发送方接收的数据字节数(即窗体大小)来进行流量控制. 假设窗体大小为0会发生什么情况呢?这将有效阻止发送方传送数据,直到窗体变为非0为止. ACK的传输并不可靠,也就是说,TCP不正确ACK报文段进行确认,TCP仅仅确认那些包括有数据的ACK报文段. 1.坚持定时器 假设一个场景:假设一个确认丢失了,则两方就有可能由于等待对方而使连接终止,接收方等待接收数据(由于它已经向发送方通告了一个非0的窗体),而发送方在等待同意它继续发送数据的窗体更新.为防止这种死锁情况的发生

javascript-函数和定时器

1.函数自执行 JavaScript中不像C#中那样要求所有路径都有返回值,没有返回值就是undefined (function(){alert(1);}()); (function(){alert(1);})(); !function(){alert(1);}(); void function(){alert(2);}(); 2.可变参数 js函数无法像C#方法那样重载 下面的代码等于是对a函数重新定义 function a() { alert("无参函数"); } function

&lt;JavaScript&gt; 八. 定时器

1 <!DOCTYPE html> 2 <html> 3 <head> 4 <title></title> 5 <script type="text/javascript"> 6 /* 7 定时器 周期性执行JS代码 8 */ 9 10 // --------------------- 方法 ----------------------- 11 /* 12 1. setInterval(code, millisec

JavaScript定时器原理分析

.header { cursor: pointer } p { margin: 3px 6px } th { background: lightblue; width: 20% } table { text-align: center; margin-top: 20px; margin-left: 10px; margin-bottom: 20px } a { cursor: pointer; text-decoration: none; color: gray } a:hover { text

workman源代码阅读 - 使用信号处理器实现定时器

<?php /** * SIGALRM信号处理器注册成功后,在什么情况下进程会收到该信号呢? * * 在Linux系统下,每个进程都有惟一的一个定时器,该定时器提供了以秒为单位的定时功能.在定时器设置的超时时间到达后,调用alarm的进程将收到SIGALRM信号. */ /** * 启动信号处理器 */ \MySignalClazz::init(); /** * 信号处理器 * @author Administrator * */ class MySignalClazz { /** * Task

关于JS中的定时器!!!

定时器: 周期性定时器 一次性定时器 1. 周期性定时器: 让程序每隔一段时间间隔,反复执行一项任务 何时使用: 只要连续,有规律的持续播放的动画 如何使用: 3件事: 1. ***任务函数: 定时器每次执行的任务 function task(){...} 任务函数通常要自己考虑:*何时停止*定时器的临界值 2. 将任务函数放入定时器,定时执行: timer=setInterval(task,interval) 其中: interval 是间隔的毫秒数 timer往往是一个全局变量: 用来保存当

如何弹出一个窗口气泡(使用定时器向上移动)

原文链接:http://blog.csdn.net/tangaowen/article/details/5108980 如何弹出一个窗口气泡 最近在工作中遇到这样一个需求,就是需要将一个窗口从右下角任务栏下面缓缓的上升到任务栏的上面,现在有很多的软件都有这样的气泡,比如:搜狗输入法的词条更新窗口,还比如CSDN的广告窗口等等. 1.首先 将要弹出的窗口移动到任务栏(当前屏幕)以下 2.然后,获得任务栏(本质是个窗口)的高度,这样就可以知道窗口最终的位置了 3.然后,计算获得窗口最终停止的位置:计

JavaScript实现绑定DOM的定时器插件

问题 使用原生的setTimeout和setInterval仅仅能够实现, 定时执行事件处理函数, 在网页开发中, 往往会出现一种情况,定时器用于定时更新某个页面区域的数据, 往往在页面加载之后, 就启动这个定时器, 往后则间隔执行此定时器. 页面上定时刷新的区域可能会动态消失, 特别是在ajax被广泛使用的今天, 如果定时刷新的区域被删除了, 则定时器材也需要自动清除掉. 此二个接口,如果实现这种效果需要, 自己维护定时器句柄, 并且在处理定时器事件函数的时候, 首先判断 指定的刷新区域是否还