CVPR历年Best Papers

作者:我爱机器学习
原文链接:CVPR历年Best Papers

CVPR (Computer Vision)(2000-2016)
年份 标题 一作 一作单位
2016 Deep Residual Learning for Image Recognition Kaiming He Microsoft Research
2015 DynamicFusion: Reconstruction and Tracking of Non-rigid Scenes in Real-Time Richard A. Newcombe University of Washington
2014 What Camera Motion Reveals About Shape with Unknown BRDF Manmohan Chandraker NEC Labs America
2013 Fast, Accurate Detection of 100,000 Object Classes on a Single Machine Thomas Dean Google
2012 A Simple Prior-free Method for Non-Rigid Structure-from-Motion Factorization Yuchao Dai Northwestern Polytechnical University
2011 Real-time Human Pose Recognition in Parts from Single Depth Images Jamie Shotton Microsoft Research
2010 Efficient Computation of Robust Low-Rank Matrix Approximations in the Presence of Missing Data usi… Anders Eriksson University of Adelaide
2009 Single Image Haze Removal Using Dark Channel Prior Kaiming He The Chinese University of Hong Kong
2008 Global Stereo Reconstruction under Second Order Smoothness Priors Oliver Woodford University of Oxford
Beyond Sliding Windows: Object Localization by Efficient Subwindow Search Chistoph H. Lampert Max Planck Institut
2007 Dynamic 3D Scene Analysis from a Moving Vehicle Bastian Leibe ETH Zurich
2006 Putting Objects in Perspective Derek Hoiem Carnegie Mellon University
2005 Real-Time Non-Rigid Surface Detection Julien Pilet École Polytechnique Fédérale de Lausanne
2004 Programmable Imaging using a Digital Micromirror Array Shree K. Nayar Columbia University
2003 Object Class Recognition by Unsupervised Scale-Invariant Learning Rob Fergus University of Oxford
2001 Morphable 3D models from video Matthew Brand Mitsubishi Electric Research Laboratories
2000 Real-Time Tracking of Non-Rigid Objects using Mean Shift Dorin Comaniciu Siemens Corporate Research

参考文献:Best Paper Awards in Computer Science (since 1996)

时间: 2024-10-10 12:05:48

CVPR历年Best Papers的相关文章

ICML历年Best Papers

作者:我爱机器学习原文链接:ICML历年Best Papers ICML (Machine Learning)(1999-2016) 2016 Dueling Network Architectures for Deep Reinforcement Learning Ziyu Wang Google Inc. Pixel Recurrent Neural Networks Aaron van den Oord Google DeepMind Ensuring Rapid Mixing and L

SIGKDD历年Best Papers

作者:我爱机器学习原文链接:SIGKDD历年Best Papers SIGKDD(Data Mining)(1997-2016) 年份 标题 一作 一作单位 2016 FRAUDAR: Bounding Graph Fraud in the Face of Camouflage Bryan Hooi Carnegie Mellon University 2015 Efficient Algorithms for Public-Private Social Networks Flavio Chie

CVPR 2015 papers

CVPR2015 Papers震撼来袭! CVPR 2015的文章可以下载了,如果链接无法下载,可以在Google上通过搜索paper名字下载(友情提示:可以使用filetype:pdf命令). Going Deeper With ConvolutionsChristian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke

CVPR 2015 paper 下载

cvpr2015列表已经出来提供下载,文件太多可以用迅雷或者wget直接下载 http://www.cv-foundation.org/openaccess/CVPR2015.py 但是这样全部下载还得一个一个翻看,于是乎写了个小程序专门选则自己方向的论文. 需要htmlparser解析网页代码,下载地址http://sourceforge.net/projects/htmlparser/files/htmlparser/ 还有为了方便,直接把paper网页保存在D盘了. import java

Fei-Fei Li's advice on Good Research and Good Papers

Fei-Fei Li, Director of the Stanford Artificial Intelligence Lab and the Stanford Vision Lab, provided some advice on writing academic papers in the year of 2009. I’ve read this many times since several years ago. Every time I read, the advice makes

如何教你在NIPS会议上批量下载历年的pdf文档(另附04~14年NIPS论文下载链接)

如何获得NIPS会议上批量下载的链接? NIPS会议下载网址:http://papers.nips.cc/ a.点击打开上述网站,进入某一年的所有会议,例如2014年,如下图 b.然后对着当前网页点击鼠标右键->点击审查元素(这里我用的是360浏览器打开),(如下图) 下一步----------------------------------------------------------------------------------------------------------------

历年NOIP水题泛做

快noip了就乱做一下历年的noip题目咯.. noip2014 飞扬的小鸟 其实这道题并不是很难,但是就有点难搞 听说男神错了一个小时.. 就是$f_{i,j}$表示在第$i$个位置高度为$j$的时候最小点击次数 递推的话对于上升的情况只做一次,后面几次在后面再做.. #include <cstdio> #include <cstring> #include <cstdlib> #include <algorithm> using namespace st

(转)The 9 Deep Learning Papers You Need To Know About (Understanding CNNs Part 3)

Adit Deshpande CS Undergrad at UCLA ('19) Blog About The 9 Deep Learning Papers You Need To Know About (Understanding CNNs Part 3) Introduction Link to Part 1Link to Part 2 In this post, we’ll go into summarizing a lot of the new and important develo

华为历年试题(掷骰子游戏 7)

问题描述: 在掷骰子游戏中,会根据所掷数字在地图中前进几步,前进完成后需要根据当前地图位置所示的障碍进行相应操作,其中障碍表示: 1)  9:无障碍 2)  1:停掷一轮,即下轮所掷数字无效: 3)  2:后退两步,如果已经到起点不再后退: 4)  3:奖励前进一步 如果在游戏过程中,已经走到地图终点,则游戏结束.根据输入的地图数组,和5个骰子数的数组,返回最终玩家前进了多少步. 要求实现函数: void dice(int map_len, int* map, int* dice_val, in