Codevs 1497 取余运算== 洛谷P 1226

时间限制: 1 s   空间限制: 128000 KB   题目等级 : 钻石 Diamond

题目描述 Description

输入b,p,k的值,编程计算bp mod k的值。其中的b,p,k*k为长整型数(2^31范围内)。

输入描述 Input Description

b p k

输出描述 Output Description

输出b^p mod k=?

=左右没有空格

样例输入 Sample Input

2  10  9

样例输出 Sample Output

2^10 mod 9=7

 1 #include<iostream>
 2 #include<cstdio>
 3 #include<cstring>
 4 using namespace std;
 5 long long b,p,k,ans=1,q,t;
 6 int main()
 7 {
 8     scanf("%d%d%d",&b,&p,&k);q=p;t=b;
 9     while(p>0)
10     {
11         if(p%2==1) ans=(ans*b)%k;
12         p/=2;
13         b=(b*b)%k;
14     }
15     cout<<t<<‘^‘<<q<<" mod "<<k<<‘=‘<<ans<<endl;
16     return 0;
17 }

思路:快速幂

时间: 2024-12-25 01:18:58

Codevs 1497 取余运算== 洛谷P 1226的相关文章

codevs 1497取余运算

1497 取余运算 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 钻石 Diamon 题目描述 Description 输入b,p,k的值,编程计算bp mod k的值.其中的b,p,k*k为长整型数(2^31范围内). 输入描述 Input Description b p k 输出描述 Output Description 输出b^p mod k=? =左右没有空格 样例输入 Sample Input 2  10  9 样例输出 Sample Output 2^10 mod

1497 取余运算

1497 取余运算 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 钻石 Diamond 题解 查看运行结果 题目描述 Description 输入b,p,k的值,编程计算bp mod k的值.其中的b,p,k*k为长整型数(2^31范围内). 输入描述 Input Description b p k 输出描述 Output Description 输出b^p mod k=? =左右没有空格 样例输入 Sample Input 2  10  9 样例输出 Sample Outp

快速幂【codevs】1497 取余运算

2014-10-02 20:34:27 时间限制: 1 s 空间限制: 128000 KB 题目描述 Description 输入b,p,k的值,编程计算bp mod k的值.其中的b,p,k*k为长整型数(2^31范围内). 输入描述 Input Description b p k 输出描述 Output Description 输出b^p mod k=? =左右没有空格 样例输入 Sample Input 2  10  9 样例输出 Sample Output 2^10 mod 9=7 分析

洛谷——P1226 取余运算||快速幂

P1226 取余运算||快速幂 题目描述 输入b,p,k的值,求b^p mod k的值.其中b,p,k*k为长整型数. 输入输出格式 输入格式: 三个整数b,p,k. 输出格式: 输出“b^p mod k=s” s为运算结果 输入输出样例 输入样例#1: 复制 2 10 9 输出样例#1: 复制 2^10 mod 9=7 快速幂取膜版 #include<cstdio> #include<cstring> #include<iostream> #include<al

【分治】取余运算

问题 E: [分治]取余运算 时间限制: 1 Sec  内存限制: 128 MB提交: 16  解决: 6[提交][状态][讨论版] 题目描述 输入b,p,k的值,求bp mod k的值.其中b,p,k*k为长整型数. 输入 三个整数,分别为b,p,k的值 输出 bp mod k 样例输入 2 10 9 样例输出 2^10 mod 9=7 提示 解题思路:分治,顾名思义,把一个大问题分解为多个小问题. 这里有一个公式,利用这个公式通过递归求得. 代码: #include <iostream>

Luogu P1226 取余运算||快速幂(数论,分治)

P1226 取余运算||快速幂 题目描述 输入b,p,k的值,求b^p mod k的值.其中b,p,k*k为长整型数. 输入输出格式 输入格式: 三个整数b,p,k. 输出格式: 输出"b^p mod k=s" s为运算结果 输入输出样例 输入样例#1: 2 10 9 输出样例#1: 2^10 mod 9=7 这是一道很有趣的水题,如果知道公式. 一般求解会溢出,导致答案错误. 这里介绍取模的一个公式: a*b%k=(a%k)*(b%k)%k. 在我们这道题中是b^p = (b^(p/

为什么Java的hash表的长度一直是2的指数次幂?为什么这个(hash&amp;(h-1)=hash%h)位运算公式等价于取余运算?

1.什么是hash表? 答:简单回答散列表,运算在hash结构散列(分散)存放. 2.如何散列排布,如果均匀排布? 答:取余运算 3.Java中如何实现? 答:hash&(h-1) 4.为什么hash&(h-1)=等价于hash%h java的h(表长)一定是2的指数次幂,2的指数次幂2n 2n的结果:一定长这样10000...(n个0) 2n-1的结果:一定这样1111(n-1)个1 举个例子: 当h=16,对应的二进制:00010000 h-1=15,对应的二进制:00001111 可

Math——取模运算及取余运算

取模运算及取余运算 取余运算(Complementation)即我们小学时学的数学算术概念,而取模运算(Modulus Operation)常用于程序设计中 公式 a%b = a - (a/b * b) 取整运算 要明白取模运算和取余运算之间的区别,首先要了解取整运算(Round Operation) 取整运算常用的有三种,向负无穷取整,向正无穷取整,向零取整 以lua语言为例,lua的math数学库提供三个取整函数,floor向负无穷取整,ceil向正无穷取整,modf向零取整 (PS:lua

取余运算||快速幂

题目描述 输入b,p,k的值,求b^p mod k的值.其中b,p,k*k为长整型数. 输入输出格式 输入格式: 三个整数b,p,k. 输出格式: 输出"b^p mod k=s" s为运算结果 思路: 显然取余和乘法谁都会 关键在于快速 我们知道乘方有一个性质 x^n=(x^2)^(n/2) 这样我们就能通过二分使时间复杂度降到log级别 你可能会说,n%2==1怎么办?? 和简单,再定义一个变量作为暂存器,乘一下x 这时候又有另一个定理 x^n=x^(n-1)*x 所以n可以减一 最