POJ 2342 Anniversary party (树形dp 入门题)

Anniversary party

Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 4810   Accepted: 2724

Description

There is going to be a party to celebrate the 80-th Anniversary of the Ural State University. The University has a hierarchical structure of employees. It means that the supervisor relation forms a
tree rooted at the rector V. E. Tretyakov. In order to make the party funny for every one, the rector does not want both an employee and his or her immediate supervisor to be present. The personnel office has evaluated conviviality of each employee, so everyone
has some number (rating) attached to him or her. Your task is to make a list of guests with the maximal possible sum of guests‘ conviviality ratings.

Input

Employees are numbered from 1 to N. A first line of input contains a number N. 1 <= N <= 6 000. Each of the subsequent N lines contains the conviviality rating of the corresponding employee. Conviviality
rating is an integer number in a range from -128 to 127. After that go N – 1 lines that describe a supervisor relation tree. Each line of the tree specification has the form:

L K

It means that the K-th employee is an immediate supervisor of the L-th employee. Input is ended with the line

0 0

Output

Output should contain the maximal sum of guests‘ ratings.

Sample Input

7
1
1
1
1
1
1
1
1 3
2 3
6 4
7 4
4 5
3 5
0 0

Sample Output

5

Source

Ural State University Internal Contest
October‘2000 Students Session

题目链接:http://poj.org/problem?id=2342

题目大意:一棵树,每个节点有一个值,现在要从中选一些点,要求这些点值和最大并且每对儿子和父亲不能同时被选

题目分析:dp[i][0]和dp[i][1]分别表示不选和选第i个点时以i为子树根时子树值的和,则:

dp[fa[i]][1] += dp[i][0]  表示选i的父亲时,其值等于自身值加上不选i时的值

dp[fa[i]][0] += max(dp[i][1], dp[i][0])  表示不选父亲时,则其值等于其儿子被选或没被选的值的最大值

#include <cstdio>
#include <cstring>
#include <vector>
#include <algorithm>
using namespace std;
int const MAX = 6005;
int dp[MAX][2], val[MAX];
bool vis[MAX], flag[MAX];
vector <int> vt[MAX];

void DFS(int fa)
{
    vis[fa] = true;
    dp[fa][1] = val[fa];
    int sz = vt[fa].size();
    for(int i = 0; i < sz; i++)
    {
        int son = vt[fa][i];
        if(!vis[son])
        {
            DFS(son);
            dp[fa][1] += dp[son][0];
            dp[fa][0] += max(dp[son][1], dp[son][0]);
        }
    }
    return;
}

int main()
{
    int n;
    while(scanf("%d", &n) && n)
    {
        for(int i = 1; i <= n; i++)
            vt[i].clear();
        memset(flag, false, sizeof(flag));
        memset(vis, false, sizeof(vis));
        memset(dp, 0, sizeof(dp));
        for(int i = 1; i <= n; i++)
            scanf("%d", &val[i]);
        for(int i = 0; i < n - 1; i++)
        {
            int a, b;
            scanf("%d %d", &a, &b);
            vt[b].push_back(a);
            flag[a] = true;
        }
        int root;
        for(int i = 1; i <= n; i++) //n个点n-1条边,必然存在“入度”为0的点即树根
        {
            if(!flag[i])
            {
                root = i;
                break;
            }
        }
        DFS(root);
        printf("%d\n", max(dp[root][1], dp[root][0]));
    }
}
时间: 2024-12-26 21:28:29

POJ 2342 Anniversary party (树形dp 入门题)的相关文章

POJ 2342 Anniversary party 树形dp入门

http://poj.org/problem?id=2342 某公司要举办一次晚会,但是为了使得晚会的气氛更加活跃,每个参加晚会的人都不希望在晚会中见到他的直接上司,现在已知每个人的活跃指数和上司关系(当然不可能存在环),求邀请哪些人(多少人)来能使得晚会的总活跃指数最大. 对于每一个人,都有两种情况,选,或者不选.然后选了后,他的下属就只能不选了,如果它不选,下属可能选或者不选. 这样用dfs + 记忆化搜索,就好了 每次搜索,就是要求以第cur个节点为根的子树中,其中第cur个节点的状态是s

POJ 2342 Anniversary party 树形DP基础题

题目链接:http://poj.org/problem?id=2342 题目大意:在一个公司中,每个职员有一个快乐值ai,现在要开一个party,邀请了一个员工就不可能邀请其直属上司,同理邀请了一个人就不可以邀请其的直属员工, 问如何使得这个快乐值达到最大. 题解:对每个结点dp[i][0]表示不邀请这个员工,其子树达到的最大快乐值,dp[i][1]表示邀请i员工其子树达到的最大值. dp[i][0]=(i的全部员工的max(dp[u][1],dp[u][0)相加,也就是其子员工来或不来的最大快

POJ 2342 Anniversary Party ( 树形DP )

deque 的插入操作不一定有 vector 快 #include <iostream> #include <cstring> #include <fstream> #include <vector> using namespace std; #define NOT_SELECTED 0 #define SELECTED 1 #define SIZE 6001 vector< int > relations[SIZE]; bool visited

POJ 2342 树形DP入门题

有一个大学的庆典晚会,想邀请一些在大学任职的人来参加,每个人有自己的搞笑值,但是现在遇到一个问题就是如果两个人之间有直接的上下级关系,那么他们中只能有一个来参加,求请来一部分人之后,搞笑值的最大是多少. 树形DP入门题. DP部分: dp[i][0]表示职员i不来参加party,以i为根的子树的最大搞笑值, dp[i][1]表示职员i来参加party,以i为根的子树的最大搞笑值. 转移方程: dp[cur][1]+=dp[next][0]; dp[cur][0]+=Max(dp[next][1]

POJ 3342 树形DP入门题

题目意思和POJ2342一样,只是多加了一个条件,如果最大方案数唯一,输出Yes,不唯一输出No dp的是时候多加一个变量记录答案是否唯一即可 #include "stdio.h" #include "string.h" #include "vector" using namespace std; struct node { int fa; vector<int>child; }data[210]; struct comp { int

POJ 1947 树形DP入门题

给出N个点,N-1个关系,建出树形图,问最少减去几个边能得到节点数为P的树.典型树形DP题 dp[cur][j] :记录cur结点,要得到一棵j个节点的子树去掉的最少边数 转移方程用的背包的思想 对当前树的每一个子树进行计算 砍掉此子树:   dp[cur][j]=dp[cur][j]+1; 不砍掉:           for (l=0;l<=j;l++)  dp[cur][j]=Min(dp[cur][j],dp[cur][l]+dp[next][j-l]); 枚举从该树中留l个节点其他由新

[poj2342]Anniversary party树形dp入门

题意:选出不含直接上下司关系的最大价值. 解题关键:树形dp入门题,注意怎么找出根节点,运用了并查集的思想. 转移方程:dp[i][1]+=dp[j][0];/i是j的子树 dp[i][0]+=max(dp[j][0],dp[j][1]); 1 #include<cstdio> 2 #include<cstring> 3 #include<algorithm> 4 #include<cstdlib> 5 #include<iostream> 6

poj 2324 Anniversary party(树形DP)

/*poj 2324 Anniversary party(树形DP) ---用dp[i][1]表示以i为根的子树节点i要去的最大欢乐值,用dp[i][0]表示以i为根节点的子树i不去时的最大欢乐值, ---于是当i去时,i的所有儿子都不能去:dp[i][1]=sum(dp[j][0])+a[i],其中j是i的儿子节点. ---当i不去时,i的儿子可去也可不去:dp[i][0]=sum(max(dp[j][0],dp[j][1])),j是i的儿子节点 ---边界条件:当i时叶子节点时,dp[i][

URAL 1039 Anniversary Party 树形DP 水题

1039. Anniversary Party Time limit: 0.5 secondMemory limit: 8 MB Background The president of the Ural State University is going to make an 80'th Anniversary party. The university has a hierarchical structure of employees; that is, the supervisor rela