3. 证明数值半径 $w(\cdot)$ 是 $M_n$ 上的一个范数.
证明: (1). $$\beex \bea w(A)&\geq 0;\\ w(A)=0&\ra x^*Ax=0,\quad \forall\ x\\ &\ra x^*Ay=\frac{1}{4} \sum_{k=0}^3 i^k(x+i^ky)^*A(x+i^ky)=0,\quad \forall\ x,y\\ &\ra Ay=0,\quad \forall\ y\\ &\ra A=0. \eea \eeex$$ (2). $$\beex \bea &\quad |x^*(\al A)x|=|\al|\cdot |x^*Ax|,\quad \forall\ x:\ ||x||_2=1\\ &\ra w(\al A)=|\al|\cdot w(A). \eea \eeex$$ (3) $$\beex \bea &\quad |x^*(A+B)x| =|x^*Ax+x^*Bx|\leq |x^*Ax|+|x^*Bx|,\quad \forall\ x: ||x||_2=1\\ &\ra w(A+B)\leq w(A)+w(B). \eea \eeex$$
时间: 2024-10-08 11:59:14