POJ 3020 (二分图+最小路径覆盖)

题目链接:http://poj.org/problem?id=3020

题目大意:读入一张地图。其中地图中圈圈代表可以布置卫星的空地。*号代表要覆盖的建筑物。一个卫星的覆盖范围是其周围上下左右四个点。问最少需要几个卫星才能覆盖所有建筑物。

解题思路

有点类似POJ 1328的覆盖题,不过那题比较简单可以贪心。这题你可以YY试试。

覆盖问题其实可以用图论解决。这题就属于最小路径覆盖,手动由一个点出发连一些路径,这样Hungry就能求出最少需要多少这样的中心点,就可以达成目标了。

本题最大的疑问是到底是建有向图,还是无向图。由于Hungry只适用于有向图,所以好像应该建有向图。但是扫描这个图的时候,Hash图上点不算简单,需要对n*m标个号,然后Hash。

建无向图其实也不是很简单,需要拆点,模拟出所谓的“有向图”来Hungry,本点放在X集,影子点放在Y集,如果有边(u,v),则u连v‘(本点连影子点),对邻接矩阵每个城市相邻四个点扫一下加下边,这样自动模拟出"有向图"。

跑一遍Hungry,ans=建筑物数-match/2。(无向图match是两倍)

#include "iostream"
#include "cstdio"
#include "cstring"
#include "string"
#include "fstream"
using namespace std;
int G[401][401],link[401];
int map[410][410];
bool vis[801];
int Case,n,m,pos;
void AddEdge(int x,int y)
{
    G[x][y]=1; //本点连影子点
}
bool dfs(int u)
{
    for(int v=1;v<=pos;v++)
    {
        if(G[u][v]&&!vis[v])
        {
            vis[v]=true;
            if(!link[v]||dfs(link[v]))
            {
                link[v]=u;
                return true;
            }
        }
    }
    return false;
}
int main()
{
    #define fin cin
    ifstream fin("in.txt");
    string line;
    cin>>Case;
    while(Case--)
    {
        pos=0;
        int res=0;
        cin>>n>>m;
        getline(cin,line);
        for(int i=1;i<=n;i++) //吸收残留
        {
            getline(cin,line);
            for(int j=0;j<line.size();j++)
                if(line[j]==‘*‘) map[i][j+1]=++pos;
        }
        for(int i=1;i<=n;i++)
        {
            for(int j=1;j<=m;j++)
            {
                if(map[i][j]&&map[i-1][j]) AddEdge(map[i][j],map[i-1][j]);
                if(map[i][j]&&map[i+1][j]) AddEdge(map[i][j],map[i+1][j]);
                if(map[i][j]&&map[i][j-1]) AddEdge(map[i][j],map[i][j-1]);
                if(map[i][j]&&map[i][j+1]) AddEdge(map[i][j],map[i][j+1]);
            }
        }
        for(int i=1;i<=pos;i++)
        {
            memset(vis,0,sizeof(vis));
            if(dfs(i)) res++;
        }
        res=pos-res/2;
        cout<<res<<endl;
        memset(map,0,sizeof(map));
        memset(G,0,sizeof(G));
        memset(link,0,sizeof(link));
    }
}
时间: 2024-11-24 08:34:45

POJ 3020 (二分图+最小路径覆盖)的相关文章

poj 3020 二分图最小路径覆盖

二分图最小路径覆盖=|v|-最大匹配.此题为有向图,切所有边正反向存了两遍,所以结果匹配数要除以2 // // main.cpp // poj3020 // // Created by Fangpin on 15/5/29. // Copyright (c) 2015年 FangPin. All rights reserved. // #include <iostream> #include <cstdio> #include <vector> #include <

Taxi Cab Scheme POJ - 2060 二分图最小路径覆盖

Running a taxi station is not all that simple. Apart from the obvious demand for a centralised coordination of the cabs in order to pick up the customers calling to get a cab as soon as possible,there is also a need to schedule all the taxi rides whi

POJ 2594 二分图最小路径覆盖

点击打开链接 题意:将所有点都连起来至少需要多少条路径 思路:二分图的最小路径覆盖,而最小路径覆==图的顶点数-图的最大匹配,而当初还学习过最小顶点覆盖==最大匹配,而最小顶点覆盖需要连双向边,结果除以2,那是因为1-->2时,点1和点2都已经用过,所以我在连一个相应的一条边,代表这两个点不能在用了,样例详见hdu 1054 第二组.而接下来的求最小路径覆盖的最大匹配我们就只能是单向的,这个为什么可以避免呢,因为1-->2-->3这样的话,最小路径为1,但是转化为二分图上的话,对应的点2

POJ 1422 DAG最小路径覆盖

求无向图中能覆盖每个点的最小覆盖数 单独的点也算一条路径 这个还是可以扯到最大匹配数来,原因跟上面的最大独立集一样,如果某个二分图(注意不是DAG上的)的边是最大匹配边,那说明只要取两个端点只要一条边即可. 故最小覆盖数还是 顶点数-最大匹配数 根据DAG建图的时候,就是DAG有边就给对应的端点建边 #include <iostream> #include <cstdio> #include <cstring> using namespace std; int d[15

POJ3216 Repairing Company【二分图最小路径覆盖】【Floyd】

题目链接: http://poj.org/problem?id=3216 题目大意: 有Q个地点,告诉你Q个地点之间的相互距离(从i地点赶到j地点需要的时间).有M项任务, 给你M项任务所在的地点block.开始时间start和任务完成需要时间time.一个工人只有在 他准备完成的下一项任务开始之前完成手上的任务,然后在下一项任务开始之前赶到下一项 任务的地点,才能完成这两项任务.问:最少需要多少个工人来完成这M项任务. 思路: 先用Floyd算出Q个地点之间相互最短距离.然后建立一个二分图,每

POJ2594 Treasure Exploration【二分图最小路径覆盖】【Floyd】

题目链接: http://poj.org/problem?id=2594 题目大意: 给你N个地点,M条有向边,已知构成的图是有向无环图.现在要在地点上放机器人通过M 条边来遍历N个地点,问:最少需要多少个机器人可以遍历N个地点. 思路: 这是一道求最小路径覆盖的题目.和一般最小路径覆盖的题目不一样的地方是:这里的点可 以重复遍历.也就是可以有两个及以上的机器人经过同一个点. 那么,先建立一个二分图, 两边都为N个地点.然后在原图的基础上,用Floyd求一次传递闭包,也就是如果点i可以到达 点j

POJ1422 Air Raid【二分图最小路径覆盖】

题目链接: http://poj.org/problem?id=1422 题目大意: 有N个地点和M条有向街道,现在要在点上放一些伞兵,伞兵可以沿着有向街道走,直到不能走为止. 每条边只能被一个伞兵走一次.问:至少放多少伞兵,能使伞兵可以走到图上所有的点. 思路: 很明显的最小路径覆盖问题.先转换为二分图,先将N个点每个点拆成两个点,左边是1~N个点,右 边也是1~N个点.将有向街道变为左边点指向右边点的边. 因为二分图最小路径覆盖 = 点数 - 二分图最大匹配数,则求出结果就是放的最少伞兵数.

HDU1151_Air Raid(二分图/最小路径覆盖=n-最大匹配)

解题报告 题目传送门 题意: 一个小镇,所有的街道都是单向的,这些街道都是从一个十字路口通往另一个十字路口,已知从任何十字路口出发,沿着这些街道行走,都不能回到同一个十字路口,也就是说不存在回路. 计算攻击这个小镇需要派的伞兵最少数目,这些伞兵要走遍小镇的所有十字路口,每个十字路口只由一个伞兵走到.每个伞兵在一个十字路口着陆,沿着街道可以走到其他十字路口. 思路: 用最小的伞兵覆盖街道,最小路径覆盖模型.把每个点拆成X1,Y1,这样建成二分图.最小路径覆盖=n-最大匹配数. #include <

POJ - 3020 Antenna Placement 二分图 最小路径覆盖

题目大意:有n个城市,要在这n个城市上建立无线电站,每个无线电站只能覆盖2个相邻的城市,问至少需要建多少个无线电站 解题思路:英语题目好坑,看了半天.. 这题和POJ - 2446 Chessboard类似 可以将所有城市分成两个点集,那么之间的连线就代表无线电站的覆盖关系了. 因为所有城市都要覆盖到,所以根据关系,求出最小路径覆盖就能覆盖所有城市了 #include<cstdio> #include<algorithm> #include<cstring> #incl