vijos1781 同余方程

描述

求关于x的同余方程ax ≡ 1 (mod b)的最小正整数解。

格式

输入格式

输入只有一行,包含两个正整数a, b,用一个空格隔开。

输出格式

输出只有一行,包含一个正整数x0,即最小正整数解。输入数据保证一定有解。

样例1

样例输入1[复制]

3 10

样例输出1[复制]

7

限制

每个测试点1s

提示

对于40%的数据,2 ≤b≤ 1,000; 
对于60%的数据,2 ≤b≤ 50,000,000; 
对于100%的数据,2 ≤a, b≤ 2,000,000,000。

来源

Noip2012提高组复赛Day2T1

又是复习题……练练exgcd

感觉这么水的题发上去显得我很没有水平

算了……反正我也确实没水平

#include<cstdio>
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<cmath>
#include<queue>
#include<deque>
#include<set>
#include<map>
#include<ctime>
#define LL long long
#define inf 0x7ffffff
#define pa pair<int,int>
#define pi 3.1415926535897932384626433832795028841971
using namespace std;
inline LL read()
{
    LL x=0,f=1;char ch=getchar();
    while(ch<‘0‘||ch>‘9‘){if(ch==‘-‘)f=-1;ch=getchar();}
    while(ch>=‘0‘&&ch<=‘9‘){x=x*10+ch-‘0‘;ch=getchar();}
    return x*f;
}
int a,b,x,y;
inline int gcd(int a,int b)
{
	if (!b)return a;
	return gcd(b,a%b);
}
inline void exgcd(int a,int b,int &x,int &y)
{
	if (!b){x=1;y=0;return;}
	exgcd(b,a%b,x,y);
	int t=x;x=y;y=t-a/b*y;
}
int main()
{
	a=read();b=read();
	exgcd(a,b,x,y);
	x=(x%b+b)%b;
	printf("%d\n",x);
}

  

时间: 2024-11-03 01:23:54

vijos1781 同余方程的相关文章

【poj 1061】青蛙的约会(数论--同余方程 拓展欧几里德)

题意:已知2只青蛙的起始位置 a,b 和跳跃一次的距离 m,n,现在它们沿着一条长度为 l 的纬线(圈)向相同方向跳跃.问它们何时能相遇?(好有聊的青蛙 (??????‵) *)永不相遇就输出"Impossible".(蠢得可怜 -_-!) 解法:用拓展欧几里德求同余方程的最小正整数解.(a+mx)-(b+nx)=k*l (k表示圈数) → (m-n)x=k*l+b-a → (m-n)x=b-a(mod l).当然其实=(b-a)%l 更准确,但反正都是模,也没有关系啦.于是就像上题一

同余方程 2012年NOIP全国联赛提高组

时间限制: 1 s   空间限制: 128000 KB  题解 题目描述 Description 求关于 x 同余方程 ax ≡ 1 (mod b)的最小正整数解. 输入描述 Input Description 输入只有一行,包含两个正整数 a, b,用 一个 空格隔开. 输出描述 Output Description 输出只有一行包含一个正整数x0,即最小正整数解,输入数据保证一定有解. 样例输入 Sample Input 3 10 样例输出 Sample Output 7 数据范围及提示 D

洛谷P1082 同余方程

题目描述 求关于 x 的同余方程 ax ≡ 1 (mod b)的最小正整数解. 输入输出格式 输入格式: 输入只有一行,包含两个正整数 a, b,用一个空格隔开. 输出格式: 输出只有一行,包含一个正整数 x0,即最小正整数解.输入数据保证一定有解. 输入输出样例 输入样例#1: 3 10 输出样例#1: 7 说明 [数据范围] 对于 40%的数据,2 ≤b≤ 1,000: 对于 60%的数据,2 ≤b≤ 50,000,000: 对于 100%的数据,2 ≤a, b≤ 2,000,000,000

数论之高次同余方程(Baby Step Giant Step + 拓展BSGS)

什么叫高次同余方程?说白了就是解决这样一个问题: A^x=B(mod C),求最小的x值. baby step giant step算法 题目条件:C是素数(事实上,A与C互质就可以.为什么?在BSGS算法中是要求a^m在%c条件下的逆元的,如果a.c不互质根本就没有逆元.) 如果x有解,那么0<=x<C,为什么? 我们可以回忆一下欧拉定理: 对于c是素数的情况,φ(c)=c-1 那么既然我们知道a^0=1,a^φ(c)=1(在%c的条件下).那么0~φ(c)必定是一个循环节(不一定是最小的)

POJ2115 C Looooops【解线性同余方程】

题目链接: http://poj.org/problem?id=2115 题目大意: 对于循环语句: for(int i = A; i != B; i += C) 语句1: 已知i.A.B.C都是k进制的无符号整数类型,给出A.B.C.k的值,计算并输出语句1 的执行次数,如果为无限次,那么直接输出"FOREVER". 思路: 设算法执行X步,那么题目就变为求解A + CX ≡ B( mod M)(M= 2^k).即A + CX + MY ≡ B. CX + MY ≡ B - A(M

POJ 1061 - 青蛙的约会 - [exgcd求解一元线性同余方程]

先上干货: 定理1: 如果d = gcd(a,b),则必能找到正的或负的整数k和l,使ax + by = d. (参考exgcd:http://www.cnblogs.com/dilthey/p/6804137.html) 定理2: 一元线性同余方程ax ≡ n (mod b) 有解,当且仅当gcd(a,b)|n. 也就是说,解出了ax+by=gcd(a,b),就相当于解出了ax≡n(mod b) (而且只要满足gcd(a,b)|n,就一定有解) 定理3: 若gcd(a,b) = 1,则方程ax

洛谷 P1082 同余方程

题目描述 求关于 x 的同余方程 ax ≡ 1 (mod b)的最小正整数解. 输入输出格式 输入格式: 输入只有一行,包含两个正整数 a, b,用一个空格隔开. 输出格式: 输出只有一行,包含一个正整数 x0,即最小正整数解.输入数据保证一定有解. 输入输出样例 输入样例#1: 3 10 输出样例#1: 7 说明 [数据范围] 对于 40%的数据,2 ≤b≤ 1,000: 对于 60%的数据,2 ≤b≤ 50,000,000: 对于 100%的数据,2 ≤a, b≤ 2,000,000,000

1200 同余方程

1200 同余方程 2012年NOIP全国联赛提高组 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 钻石 Diamond 题目描述 Description 求关于 x 同余方程 ax ≡ 1 (mod b)的最小正整数解. 输入描述 Input Description 输入只有一行,包含两个正整数 a, b,用 一个 空格隔开. 输出描述 Output Description 输出只有一行包含一个正整数x0,即最小正整数解,输入数据保证一定有解. 样例输入 Sample In

codevs 1200 同余方程 2012年NOIP全国联赛提高组 x

/*我在提交的时候发现了一个特别好玩的事,有兴趣的话,可以自己尝试一下:把下面说的地方的y=0改为y=1在codevs里面能够ac,这--数据水?到一定境界--厉害了,吓得我还以为自己对了,结果一讲才知道,根本不对,然后我自己自己弄数据它就不同,这是--我太厉害了?哈哈哈*/ 题目描述 Description 求关于 x 同余方程 ax ≡ 1 (mod b)的最小正整数解. 输入描述 Input Description 输入只有一行,包含两个正整数 a, b,用 一个 空格隔开. 输出描述 O