Day9 - 进程、线程、协程篇(二)

本节内容

  1. Gevent协程
  2. Select\Poll\Epoll异步IO与事件驱动
  3. Python连接Mysql数据库操作
  4. RabbitMQ队列
  5. Redis\Memcached缓存
  6. Paramiko SSH
  7. Twsited网络框架

协程(单线程下实现多并发的效果)

协程,又称微线程,纤程。英文名Coroutine。一句话说明什么是线程:协程是一种用户态的轻量级线程。(CPU不认识协程,是用户自己操作的)

协程拥有自己的寄存器上下文和栈。协程调度切换时,将寄存器上下文和栈保存到其他地方,在切回来的时候,恢复先前保存的寄存器上下文和栈。因此:

协程能保留上一次调用时的状态(即所有局部状态的一个特定组合),每次过程重入时,就相当于进入上一次调用的状态,换种说法:进入上一次离开时所处逻辑流的位置。

协程的好处:

  • 无需线程上下文切换的开销(单线程,函数的来回切换,yield)
  • 无需原子操作锁定及同步的开销(单线程,不涉及多线程同时操作一个内存变量,即同时改数据)

    • "原子操作(atomic operation)是不需要synchronized",所谓原子操作是指不会被线程调度机制打断的操作;这种操作一旦开始,就一直运行到结束,中间不会有任何 context switch (切换到另一个线程)。原子操作可以是一个步骤,也可以是多个操作步骤,但是其顺序是不可以被打乱,或者切割掉只执行部分。视作整体是原子性的核心。
  • 方便切换控制流,简化编程模型
  • 高并发+高扩展性+低成本:一个CPU支持上万的协程都不是问题。所以很适合用于高并发处理。

缺点:

  • 无法利用多核资源:协程的本质是个单线程,它不能同时将 单个CPU 的多个核用上,协程需要和进程配合才能运行在多CPU上.当然我们日常所编写的绝大部分应用都没有这个必要,除非是cpu密集型应用。
  • 进行阻塞(Blocking)操作(如IO时)会阻塞掉整个程序

使用yield实现协程操作例子    


1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

import time

import queue

def consumer(name):

    print("--->starting eating baozi...")

    while True:

        new_baozi = yield

        print("[%s] is eating baozi %s" % (name,new_baozi))

        #time.sleep(1)

def producer():

    = con.__next__()

    = con2.__next__()

    = 0

    while n < 5:

        +=1

        con.send(n)

        con2.send(n)

        print("\033[32;1m[producer]\033[0m is making baozi %s" %n )

if __name__ == ‘__main__‘:

    con = consumer("c1")

    con2 = consumer("c2")

    = producer()

看楼上的例子,我问你这算不算做是协程呢?你说,我他妈哪知道呀,你前面说了一堆废话,但是并没告诉我协程的标准形态呀,我腚眼一想,觉得你说也对,那好,我们先给协程一个标准定义,即符合什么条件就能称之为协程:

  1. 必须在只有一个单线程里实现并发
  2. 修改共享数据不需加锁
  3. 用户程序里自己保存多个控制流的上下文栈
  4. 一个协程遇到IO操作自动切换到其它协程

基于上面这4点定义,我们刚才用yield实现的程并不能算是合格的线程,因为它有一点功能没实现,哪一点呢?

Greenlet

greenlet是一个用C实现的协程模块,相比与python自带的yield,它可以使你在任意函数之间随意切换,而不需把这个函数先声明为generator


1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

# -*- coding:utf-8 -*-

from greenlet import greenlet

def test1():

    print(12)

    gr2.switch()

    print(34)

    gr2.switch()

def test2():

    print(56)

    gr1.switch()

    print(78)

gr1 = greenlet(test1)

gr2 = greenlet(test2)

gr1.switch()

感觉确实用着比generator还简单了呢,但好像还没有解决一个问题,就是遇到IO操作,自动切换,对不对?

  

  

Gevent

Gevent 是一个第三方库,可以轻松通过gevent实现并发同步或异步编程,在gevent中用到的主要模式是Greenlet, 它是以C扩展模块形式接入Python的轻量级协程。 Greenlet全部运行在主程序操作系统进程的内部,但它们被协作式地调度。


1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

import gevent

def func1():

    print(‘\033[31;1m李闯在跟海涛搞...\033[0m‘)

    gevent.sleep(2)

    print(‘\033[31;1m李闯又回去跟继续跟海涛搞...\033[0m‘)

def func2():

    print(‘\033[32;1m李闯切换到了跟海龙搞...\033[0m‘)

    gevent.sleep(1)

    print(‘\033[32;1m李闯搞完了海涛,回来继续跟海龙搞...\033[0m‘)

gevent.joinall([

    gevent.spawn(func1),

    gevent.spawn(func2),

    #gevent.spawn(func3),

])

  

输出:

李闯在跟海涛搞...
李闯切换到了跟海龙搞...
李闯搞完了海涛,回来继续跟海龙搞...
李闯又回去跟继续跟海涛搞...

同步与异步的性能区别 

+

上面程序的重要部分是将task函数封装到Greenlet内部线程的gevent.spawn。 初始化的greenlet列表存放在数组threads中,此数组被传给gevent.joinall 函数,后者阻塞当前流程,并执行所有给定的greenlet。执行流程只会在 所有greenlet执行完后才会继续向下走。  

遇到IO阻塞时会自动切换任务

+

通过gevent实现单线程下的多socket并发

server side 


1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

import sys

import socket

import time

import gevent

from gevent import socket,monkey

monkey.patch_all()

def server(port):

    = socket.socket()

    s.bind((‘0.0.0.0‘, port))

    s.listen(500)

    while True:

        cli, addr = s.accept()

        gevent.spawn(handle_request, cli)

def handle_request(conn):

    try:

        while True:

            data = conn.recv(1024)

            print("recv:", data)

            conn.send(data)

            if not data:

                conn.shutdown(socket.SHUT_WR)

    except Exception as  ex:

        print(ex)

    finally:

        conn.close()

if __name__ == ‘__main__‘:

    server(8001)

  

client side   

+

 并发100个sock连接

  

论事件驱动与异步IO

通常,我们写服务器处理模型的程序时,有以下几种模型:

(1)每收到一个请求,创建一个新的进程,来处理该请求;

(2)每收到一个请求,创建一个新的线程,来处理该请求;

(3)每收到一个请求,放入一个事件列表,让主进程通过非阻塞I/O方式来处理请求

上面的几种方式,各有千秋,

第(1)中方法,由于创建新的进程的开销比较大,所以,会导致服务器性能比较差,但实现比较简单。

第(2)种方式,由于要涉及到线程的同步,有可能会面临死锁等问题。

第(3)种方式,在写应用程序代码时,逻辑比前面两种都复杂。

综合考虑各方面因素,一般普遍认为第(3)种方式是大多数网络服务器采用的方式

看图说话讲事件驱动模型

在UI编程中,常常要对鼠标点击进行相应,首先如何获得鼠标点击呢?
方式一:创建一个线程,该线程一直循环检测是否有鼠标点击,那么这个方式有以下几个缺点
1. CPU资源浪费,可能鼠标点击的频率非常小,但是扫描线程还是会一直循环检测,这会造成很多的CPU资源浪费;如果扫描鼠标点击的接口是阻塞的呢?
2. 如果是堵塞的,又会出现下面这样的问题,如果我们不但要扫描鼠标点击,还要扫描键盘是否按下,由于扫描鼠标时被堵塞了,那么可能永远不会去扫描键盘;
3. 如果一个循环需要扫描的设备非常多,这又会引来响应时间的问题;
所以,该方式是非常不好的。

方式二:就是事件驱动模型
目前大部分的UI编程都是事件驱动模型,如很多UI平台都会提供onClick()事件,这个事件就代表鼠标按下事件。事件驱动模型大体思路如下:
1. 有一个事件(消息)队列;
2. 鼠标按下时,往这个队列中增加一个点击事件(消息);
3. 有个循环,不断从队列取出事件,根据不同的事件,调用不同的函数,如onClick()、onKeyDown()等;
4. 事件(消息)一般都各自保存各自的处理函数指针,这样,每个消息都有独立的处理函数;

事件驱动编程是一种编程范式,这里程序的执行流由外部事件来决定。它的特点是包含一个事件循环,当外部事件发生时使用回调机制来触发相应的处理。另外两种常见的编程范式是(单线程)同步以及多线程编程。

让我们用例子来比较和对比一下单线程、多线程以及事件驱动编程模型。下图展示了随着时间的推移,这三种模式下程序所做的工作。这个程序有3个任务需要完成,每个任务都在等待I/O操作时阻塞自身。阻塞在I/O操作上所花费的时间已经用灰色框标示出来了。

在单线程同步模型中,任务按照顺序执行。如果某个任务因为I/O而阻塞,其他所有的任务都必须等待,直到它完成之后它们才能依次执行。这种明确的执行顺序和串行化处理的行为是很容易推断得出的。如果任务之间并没有互相依赖的关系,但仍然需要互相等待的话这就使得程序不必要的降低了运行速度。

在多线程版本中,这3个任务分别在独立的线程中执行。这些线程由操作系统来管理,在多处理器系统上可以并行处理,或者在单处理器系统上交错执行。这使得当某个线程阻塞在某个资源的同时其他线程得以继续执行。与完成类似功能的同步程序相比,这种方式更有效率,但程序员必须写代码来保护共享资源,防止其被多个线程同时访问。多线程程序更加难以推断,因为这类程序不得不通过线程同步机制如锁、可重入函数、线程局部存储或者其他机制来处理线程安全问题,如果实现不当就会导致出现微妙且令人痛不欲生的bug。

在事件驱动版本的程序中,3个任务交错执行,但仍然在一个单独的线程控制中。当处理I/O或者其他昂贵的操作时,注册一个回调到事件循环中,然后当I/O操作完成时继续执行。回调描述了该如何处理某个事件。事件循环轮询所有的事件,当事件到来时将它们分配给等待处理事件的回调函数。这种方式让程序尽可能的得以执行而不需要用到额外的线程。事件驱动型程序比多线程程序更容易推断出行为,因为程序员不需要关心线程安全问题。

当我们面对如下的环境时,事件驱动模型通常是一个好的选择:

  1. 程序中有许多任务,而且…
  2. 任务之间高度独立(因此它们不需要互相通信,或者等待彼此)而且…
  3. 在等待事件到来时,某些任务会阻塞。

当应用程序需要在任务间共享可变的数据时,这也是一个不错的选择,因为这里不需要采用同步处理。

网络应用程序通常都有上述这些特点,这使得它们能够很好的契合事件驱动编程模型。

此处要提出一个问题,就是,上面的事件驱动模型中,只要一遇到IO就注册一个事件,然后主程序就可以继续干其它的事情了,只到io处理完毕后,继续恢复之前中断的任务,这本质上是怎么实现的呢?哈哈,下面我们就来一起揭开这神秘的面纱。。。。

Select\Poll\Epoll异步IO 

http://www.cnblogs.com/alex3714/p/4372426.html 

番外篇 http://www.cnblogs.com/alex3714/articles/5876749.html

select 多并发socket 例子

 select socket server

 select socket client

selectors模块

This module allows high-level and efficient I/O multiplexing, built upon the select module primitives. Users are encouraged to use this module instead, unless they want precise control over the OS-level primitives used.


1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

import selectors

import socket

sel = selectors.DefaultSelector()

def accept(sock, mask):

    conn, addr = sock.accept()  # Should be ready

    print(‘accepted‘, conn, ‘from‘, addr)

    conn.setblocking(False)

    sel.register(conn, selectors.EVENT_READ, read)

def read(conn, mask):

    data = conn.recv(1000)  # Should be ready

    if data:

        print(‘echoing‘repr(data), ‘to‘, conn)

        conn.send(data)  # Hope it won‘t block

    else:

        print(‘closing‘, conn)

        sel.unregister(conn)

        conn.close()

sock = socket.socket()

sock.bind((‘localhost‘10000))

sock.listen(100)

sock.setblocking(False)

sel.register(sock, selectors.EVENT_READ, accept)

while True:

    events = sel.select()

    for key, mask in events:

        callback = key.data

        callback(key.fileobj, mask)

  

数据库操作与Paramiko模块

http://www.cnblogs.com/wupeiqi/articles/5095821.html

RabbitMQ队列  

安装 http://www.rabbitmq.com/install-standalone-mac.html

安装python rabbitMQ module


1

2

3

4

5

6

7

pip install pika

or

easy_install pika

or

源码

 

https://pypi.python.org/pypi/pika

实现最简单的队列通信

send端


1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

#!/usr/bin/env python

import pika

connection = pika.BlockingConnection(pika.ConnectionParameters(

               ‘localhost‘))

channel = connection.channel()

#声明queue

channel.queue_declare(queue=‘hello‘)

#n RabbitMQ a message can never be sent directly to the queue, it always needs to go through an exchange.

channel.basic_publish(exchange=‘‘,

                      routing_key=‘hello‘,

                      body=‘Hello World!‘)

print(" [x] Sent ‘Hello World!‘")

connection.close()

receive端


1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

#_*_coding:utf-8_*_

__author__ = ‘Alex Li‘

import pika

connection = pika.BlockingConnection(pika.ConnectionParameters(

               ‘localhost‘))

channel = connection.channel()

#You may ask why we declare the queue again ? we have already declared it in our previous code.

# We could avoid that if we were sure that the queue already exists. For example if send.py program

#was run before. But we‘re not yet sure which program to run first. In such cases it‘s a good

# practice to repeat declaring the queue in both programs.

channel.queue_declare(queue=‘hello‘)

def callback(ch, method, properties, body):

    print(" [x] Received %r" % body)

channel.basic_consume(callback,

                      queue=‘hello‘,

                      no_ack=True)

print(‘ [*] Waiting for messages. To exit press CTRL+C‘)

channel.start_consuming()

远程连接rabbitmq server的话,需要配置权限 噢 

首先在rabbitmq server上创建一个用户


1

sudo rabbitmqctl  add_user alex alex3714  

同时还要配置权限,允许从外面访问


1

sudo rabbitmqctl set_permissions -p / alex ".*" ".*" ".*"

set_permissions [-p vhost] {user} {conf} {write} {read}

vhost

The name of the virtual host to which to grant the user access, defaulting to /.

user

The name of the user to grant access to the specified virtual host.

conf

A regular expression matching resource names for which the user is granted configure permissions.

write

A regular expression matching resource names for which the user is granted write permissions.

read

A regular expression matching resource names for which the user is granted read permissions.

  

客户端连接的时候需要配置认证参数


1

2

3

4

5

6

credentials = pika.PlainCredentials(‘alex‘‘alex3714‘)

connection = pika.BlockingConnection(pika.ConnectionParameters(

    ‘10.211.55.5‘,5672,‘/‘,credentials))

channel = connection.channel()

  

  

Work Queues

在这种模式下,RabbitMQ会默认把p发的消息依次分发给各个消费者(c),跟负载均衡差不多

消息提供者代码

+

  

消费者代码

+

  

此时,先启动消息生产者,然后再分别启动3个消费者,通过生产者多发送几条消息,你会发现,这几条消息会被依次分配到各个消费者身上  

Doing a task can take a few seconds. You may wonder what happens if one of the consumers starts a long task and dies with it only partly done. With our current code once RabbitMQ delivers message to the customer it immediately removes it from memory. In this case, if you kill a worker we will lose the message it was just processing. We‘ll also lose all the messages that were dispatched to this particular worker but were not yet handled.

But we don‘t want to lose any tasks. If a worker dies, we‘d like the task to be delivered to another worker.

In order to make sure a message is never lost, RabbitMQ supports message acknowledgments. An ack(nowledgement) is sent back from the consumer to tell RabbitMQ that a particular message had been received, processed and that RabbitMQ is free to delete it.

If a consumer dies (its channel is closed, connection is closed, or TCP connection is lost) without sending an ack, RabbitMQ will understand that a message wasn‘t processed fully and will re-queue it. If there are other consumers online at the same time, it will then quickly redeliver it to another consumer. That way you can be sure that no message is lost, even if the workers occasionally die.

There aren‘t any message timeouts; RabbitMQ will redeliver the message when the consumer dies. It‘s fine even if processing a message takes a very, very long time.

Message acknowledgments are turned on by default. In previous examples we explicitly turned them off via the no_ack=True flag. It‘s time to remove this flag and send a proper acknowledgment from the worker, once we‘re done with a task.


1

2

3

4

5

6

7

8

def callback(ch, method, properties, body):

    print " [x] Received %r" % (body,)

    time.sleep( body.count(‘.‘) )

    print " [x] Done"

    ch.basic_ack(delivery_tag = method.delivery_tag)

channel.basic_consume(callback,

                      queue=‘hello‘)

  Using this code we can be sure that even if you kill a worker using CTRL+C while it was processing a message, nothing will be lost. Soon after the worker dies all unacknowledged messages will be redelivered

    

消息持久化  

We have learned how to make sure that even if the consumer dies, the task isn‘t lost(by default, if wanna disable  use no_ack=True). But our tasks will still be lost if RabbitMQ server stops.

When RabbitMQ quits or crashes it will forget the queues and messages unless you tell it not to. Two things are required to make sure that messages aren‘t lost: we need to mark both the queue and messages as durable.

First, we need to make sure that RabbitMQ will never lose our queue. In order to do so, we need to declare it as durable:


1

channel.queue_declare(queue=‘hello‘, durable=True)

  

Although this command is correct by itself, it won‘t work in our setup. That‘s because we‘ve already defined a queue called hello which is not durable. RabbitMQ doesn‘t allow you to redefine an existing queue with different parameters and will return an error to any program that tries to do that. But there is a quick workaround - let‘s declare a queue with different name, for exampletask_queue:


1

channel.queue_declare(queue=‘task_queue‘, durable=True)

  

This queue_declare change needs to be applied to both the producer and consumer code.

At that point we‘re sure that the task_queue queue won‘t be lost even if RabbitMQ restarts. Now we need to mark our messages as persistent - by supplying a delivery_mode property with a value 2.


1

2

3

4

5

6

channel.basic_publish(exchange=‘‘,

                      routing_key="task_queue",

                      body=message,

                      properties=pika.BasicProperties(

                         delivery_mode = 2# make message persistent

                      ))

消息公平分发

如果Rabbit只管按顺序把消息发到各个消费者身上,不考虑消费者负载的话,很可能出现,一个机器配置不高的消费者那里堆积了很多消息处理不完,同时配置高的消费者却一直很轻松。为解决此问题,可以在各个消费者端,配置perfetch=1,意思就是告诉RabbitMQ在我这个消费者当前消息还没处理完的时候就不要再给我发新消息了。


1

channel.basic_qos(prefetch_count=1)

带消息持久化+公平分发的完整代码

生产者端

+

消费者端

+

  

Publish\Subscribe(消息发布\订阅) 

之前的例子都基本都是1对1的消息发送和接收,即消息只能发送到指定的queue里,但有些时候你想让你的消息被所有的Queue收到,类似广播的效果,这时候就要用到exchange了,

An exchange is a very simple thing. On one side it receives messages from producers and the other side it pushes them to queues. The exchange must know exactly what to do with a message it receives. Should it be appended to a particular queue? Should it be appended to many queues? Or should it get discarded. The rules for that are defined by the exchange type.

Exchange在定义的时候是有类型的,以决定到底是哪些Queue符合条件,可以接收消息

fanout: 所有bind到此exchange的queue都可以接收消息
direct: 通过routingKey和exchange决定的那个唯一的queue可以接收消息
topic:所有符合routingKey(此时可以是一个表达式)的routingKey所bind的queue可以接收消息

   表达式符号说明:#代表一个或多个字符,*代表任何字符
      例:#.a会匹配a.a,aa.a,aaa.a等
          *.a会匹配a.a,b.a,c.a等
     注:使用RoutingKey为#,Exchange Type为topic的时候相当于使用fanout 

headers: 通过headers 来决定把消息发给哪些queue

消息publisher

+

消息subscriber

+

  

有选择的接收消息(exchange type=direct) 

RabbitMQ还支持根据关键字发送,即:队列绑定关键字,发送者将数据根据关键字发送到消息exchange,exchange根据 关键字 判定应该将数据发送至指定队列。

publisher

+

subscriber 

+

  

更细致的消息过滤

Although using the direct exchange improved our system, it still has limitations - it can‘t do routing based on multiple criteria.

In our logging system we might want to subscribe to not only logs based on severity, but also based on the source which emitted the log. You might know this concept from the syslog unix tool, which routes logs based on both severity (info/warn/crit...) and facility (auth/cron/kern...).

That would give us a lot of flexibility - we may want to listen to just critical errors coming from ‘cron‘ but also all logs from ‘kern‘.

publisher

+

subscriber

+

To receive all the logs run:

python receive_logs_topic.py "#"

To receive all logs from the facility "kern":

python receive_logs_topic.py "kern.*"

Or if you want to hear only about "critical" logs:

python receive_logs_topic.py "*.critical"

You can create multiple bindings:

python receive_logs_topic.py "kern.*" "*.critical"

And to emit a log with a routing key "kern.critical" type:

python emit_log_topic.py "kern.critical" "A critical kernel error"

  

Remote procedure call (RPC)

To illustrate how an RPC service could be used we‘re going to create a simple client class. It‘s going to expose a method named call which sends an RPC request and blocks until the answer is received:


1

2

3

fibonacci_rpc = FibonacciRpcClient()

result = fibonacci_rpc.call(4)

print("fib(4) is %r" % result)

RPC server

+

RPC client

+

  

  

Memcached & Redis使用 

memcached 

http://www.cnblogs.com/wupeiqi/articles/5132791.html  

redis 使用

http://www.cnblogs.com/alex3714/articles/6217453.html  

 

Twsited异步网络框架

Twisted是一个事件驱动的网络框架,其中包含了诸多功能,例如:网络协议、线程、数据库管理、网络操作、电子邮件等。 

事件驱动

简而言之,事件驱动分为二个部分:第一,注册事件;第二,触发事件。

自定义事件驱动框架,命名为:“弑君者”:


1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

#!/usr/bin/env python

# -*- coding:utf-8 -*-

# event_drive.py

event_list = []

def run():

    for event in event_list:

        obj = event()

        obj.execute()

class BaseHandler(object):

    """

    用户必须继承该类,从而规范所有类的方法(类似于接口的功能)

    """

    def execute(self):

        raise Exception(‘you must overwrite execute‘)

最牛逼的事件驱动框架

程序员使用“弑君者框架”:  


1

2

3

4

5

6

7

8

9

10

11

12

13

14

#!/usr/bin/env python

# -*- coding:utf-8 -*-

from source import event_drive

class MyHandler(event_drive.BaseHandler):

    def execute(self):

        print ‘event-drive execute MyHandler‘

event_drive.event_list.append(MyHandler)

event_drive.run()

Protocols

Protocols描述了如何以异步的方式处理网络中的事件。HTTP、DNS以及IMAP是应用层协议中的例子。Protocols实现了IProtocol接口,它包含如下的方法:

makeConnection               在transport对象和服务器之间建立一条连接
connectionMade               连接建立起来后调用
dataReceived                 接收数据时调用
connectionLost               关闭连接时调用

Transports

Transports代表网络中两个通信结点之间的连接。Transports负责描述连接的细节,比如连接是面向流式的还是面向数据报的,流控以及可靠性。TCP、UDP和Unix套接字可作为transports的例子。它们被设计为“满足最小功能单元,同时具有最大程度的可复用性”,而且从协议实现中分离出来,这让许多协议可以采用相同类型的传输。Transports实现了ITransports接口,它包含如下的方法:

write                   以非阻塞的方式按顺序依次将数据写到物理连接上
writeSequence           将一个字符串列表写到物理连接上
loseConnection          将所有挂起的数据写入,然后关闭连接
getPeer                 取得连接中对端的地址信息
getHost                 取得连接中本端的地址信息

将transports从协议中分离出来也使得对这两个层次的测试变得更加简单。可以通过简单地写入一个字符串来模拟传输,用这种方式来检查。

  

EchoServer


1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

from twisted.internet import protocol

from twisted.internet import reactor

class Echo(protocol.Protocol):

    def dataReceived(self, data):

        self.transport.write(data)

def main():

    factory = protocol.ServerFactory()

    factory.protocol = Echo

    reactor.listenTCP(1234,factory)

    reactor.run()

if __name__ == ‘__main__‘:

    main()

  

EchoClient


1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

from twisted.internet import reactor, protocol

# a client protocol

class EchoClient(protocol.Protocol):

    """Once connected, send a message, then print the result."""

    def connectionMade(self):

        self.transport.write("hello alex!")

    def dataReceived(self, data):

        "As soon as any data is received, write it back."

        print "Server said:", data

        self.transport.loseConnection()

    def connectionLost(self, reason):

        print "connection lost"

class EchoFactory(protocol.ClientFactory):

    protocol = EchoClient

    def clientConnectionFailed(self, connector, reason):

        print "Connection failed - goodbye!"

        reactor.stop()

    def clientConnectionLost(self, connector, reason):

        print "Connection lost - goodbye!"

        reactor.stop()

# this connects the protocol to a server running on port 8000

def main():

    = EchoFactory()

    reactor.connectTCP("localhost"1234, f)

    reactor.run()

# this only runs if the module was *not* imported

if __name__ == ‘__main__‘:

    main()

运行服务器端脚本将启动一个TCP服务器,监听端口1234上的连接。服务器采用的是Echo协议,数据经TCP transport对象写出。运行客户端脚本将对服务器发起一个TCP连接,回显服务器端的回应然后终止连接并停止reactor事件循环。这里的Factory用来对连接的双方生成protocol对象实例。两端的通信是异步的,connectTCP负责注册回调函数到reactor事件循环中,当socket上有数据可读时通知回调处理。

一个传送文件的例子 

server side 

+

client side   

+

  

  

Twisted深入

http://krondo.com/an-introduction-to-asynchronous-programming-and-twisted/

http://blog.csdn.net/hanhuili/article/details/9389433

  

  

SqlAlchemy ORM  

SQLAlchemy是Python编程语言下的一款ORM框架,该框架建立在数据库API之上,使用关系对象映射进行数据库操作,简言之便是:将对象转换成SQL,然后使用数据API执行SQL并获取执行结果

Dialect用于和数据API进行交流,根据配置文件的不同调用不同的数据库API,从而实现对数据库的操作,如:


1

2

3

4

5

6

7

8

9

10

11

12

13

MySQL-Python

    mysql+mysqldb://<user>:<password>@<host>[:<port>]/<dbname>

 

pymysql

    mysql+pymysql://<username>:<password>@<host>/<dbname>[?<options>]

 

MySQL-Connector

    mysql+mysqlconnector://<user>:<password>@<host>[:<port>]/<dbname>

 

cx_Oracle

    oracle+cx_oracle://user:pass@host:port/dbname[?key=value&key=value...]

 

更多详见:http://docs.sqlalchemy.org/en/latest/dialects/index.html

  

步骤一:

使用 Engine/ConnectionPooling/Dialect 进行数据库操作,Engine使用ConnectionPooling连接数据库,然后再通过Dialect执行SQL语句。


1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

#!/usr/bin/env python

# -*- coding:utf-8 -*-

 

from sqlalchemy import create_engine

 

 

engine = create_engine("mysql+mysqldb://root:[email protected]:3306/s11", max_overflow=5)

 

engine.execute(

    "INSERT INTO ts_test (a, b) VALUES (‘2‘, ‘v1‘)"

)

 

engine.execute(

     "INSERT INTO ts_test (a, b) VALUES (%s, %s)",

    ((555"v1"),(666"v1"),)

)

engine.execute(

    "INSERT INTO ts_test (a, b) VALUES (%(id)s, %(name)s)",

    id=999, name="v1"

)

 

result = engine.execute(‘select * from ts_test‘)

result.fetchall()

  

步骤二:

使用 Schema Type/SQL Expression Language/Engine/ConnectionPooling/Dialect 进行数据库操作。Engine使用Schema Type创建一个特定的结构对象,之后通过SQL Expression Language将该对象转换成SQL语句,然后通过 ConnectionPooling 连接数据库,再然后通过 Dialect 执行SQL,并获取结果。

+

增删改查

+

一个简单的完整例子


1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

from sqlalchemy import create_engine

from sqlalchemy.ext.declarative import declarative_base

from sqlalchemy import Column, Integer, String

from  sqlalchemy.orm import sessionmaker

Base = declarative_base() #生成一个SqlORM 基类

engine = create_engine("mysql+mysqldb://[email protected]:3306/test",echo=False)

class Host(Base):

    __tablename__ = ‘hosts‘

    id = Column(Integer,primary_key=True,autoincrement=True)

    hostname = Column(String(64),unique=True,nullable=False)

    ip_addr = Column(String(128),unique=True,nullable=False)

    port = Column(Integer,default=22)

Base.metadata.create_all(engine) #创建所有表结构

if __name__ == ‘__main__‘:

    SessionCls = sessionmaker(bind=engine) #创建与数据库的会话session class ,注意,这里返回给session的是个class,不是实例

    session = SessionCls()

    #h1 = Host(hostname=‘localhost‘,ip_addr=‘127.0.0.1‘)

    #h2 = Host(hostname=‘ubuntu‘,ip_addr=‘192.168.2.243‘,port=20000)

    #h3 = Host(hostname=‘ubuntu2‘,ip_addr=‘192.168.2.244‘,port=20000)

    #session.add(h3)

    #session.add_all( [h1,h2])

    #h2.hostname = ‘ubuntu_test‘ #只要没提交,此时修改也没问题

    #session.rollback()

    #session.commit() #提交

    res = session.query(Host).filter(Host.hostname.in_([‘ubuntu2‘,‘localhost‘])).all()

    print(res)

  

更多内容详见:

http://www.jianshu.com/p/e6bba189fcbd

http://docs.sqlalchemy.org/en/latest/core/expression_api.html

注:SQLAlchemy无法修改表结构,如果需要可以使用SQLAlchemy开发者开源的另外一个软件Alembic来完成。

步骤三:

使用 ORM/Schema Type/SQL Expression Language/Engine/ConnectionPooling/Dialect 所有组件对数据进行操作。根据类创建对象,对象转换成SQL,执行SQL。


1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

#!/usr/bin/env python

# -*- coding:utf-8 -*-

 

from sqlalchemy.ext.declarative import declarative_base

from sqlalchemy import Column, Integer, String

from sqlalchemy.orm import sessionmaker

from sqlalchemy import create_engine

 

engine = create_engine("mysql+mysqldb://root:[email protected]:3306/s11", max_overflow=5)

 

Base = declarative_base()

 

 

class User(Base):

    __tablename__ = ‘users‘

    id = Column(Integer, primary_key=True)

    name = Column(String(50))

 

# 寻找Base的所有子类,按照子类的结构在数据库中生成对应的数据表信息

# Base.metadata.create_all(engine)

 

Session = sessionmaker(bind=engine)

session = Session()

 

 

# ########## 增 ##########

# u = User(id=2, name=‘sb‘)

# session.add(u)

# session.add_all([

#     User(id=3, name=‘sb‘),

#     User(id=4, name=‘sb‘)

# ])

# session.commit()

 

# ########## 删除 ##########

# session.query(User).filter(User.id > 2).delete()

# session.commit()

 

# ########## 修改 ##########

# session.query(User).filter(User.id > 2).update({‘cluster_id‘ : 0})

# session.commit()

# ########## 查 ##########

# ret = session.query(User).filter_by(name=‘sb‘).first()

 

# ret = session.query(User).filter_by(name=‘sb‘).all()

# print ret

 

# ret = session.query(User).filter(User.name.in_([‘sb‘,‘bb‘])).all()

# print ret

 

# ret = session.query(User.name.label(‘name_label‘)).all()

# print ret,type(ret)

 

# ret = session.query(User).order_by(User.id).all()

# print ret

 

# ret = session.query(User).order_by(User.id)[1:3]

# print ret

# session.commit()

外键关联

A one to many relationship places a foreign key on the child table referencing the parent.relationship() is then specified on the parent, as referencing a collection of items represented by the child

from sqlalchemy import Table, Column, Integer, ForeignKey
from sqlalchemy.orm import relationship
from sqlalchemy.ext.declarative import declarative_base

Base = declarative_base()

1

2

3

4

5

6

7

8

9

<br data-filtered="filtered">class Parent(Base):

    __tablename__ = ‘parent‘

    id = Column(Integer, primary_key=True)

    children = relationship("Child")

class Child(Base):

    __tablename__ = ‘child‘

    id = Column(Integer, primary_key=True)

    parent_id = Column(Integer, ForeignKey(‘parent.id‘))

To establish a bidirectional relationship in one-to-many, where the “reverse” side is a many to one, specify an additional relationship() and connect the two using therelationship.back_populates parameter:


1

2

3

4

5

6

7

8

9

10

class Parent(Base):

    __tablename__ = ‘parent‘

    id = Column(Integer, primary_key=True)

    children = relationship("Child", back_populates="parent")

class Child(Base):

    __tablename__ = ‘child‘

    id = Column(Integer, primary_key=True)

    parent_id = Column(Integer, ForeignKey(‘parent.id‘))

    parent = relationship("Parent", back_populates="children")

Child will get a parent attribute with many-to-one semantics.

Alternatively, the backref option may be used on a single relationship() instead of usingback_populates:


1

2

3

4

class Parent(Base):

    __tablename__ = ‘parent‘

    id = Column(Integer, primary_key=True)

    children = relationship("Child", backref="parent")

  

  

附,原生sql join查询

几个Join的区别 http://stackoverflow.com/questions/38549/difference-between-inner-and-outer-joins

  • INNER JOIN: Returns all rows when there is at least one match in BOTH tables
  • LEFT JOIN: Return all rows from the left table, and the matched rows from the right table
  • RIGHT JOIN: Return all rows from the right table, and the matched rows from the left table

1

select host.id,hostname,ip_addr,port,host_group.name from host right join host_group on host.id = host_group.host_id

in SQLAchemy


1

session.query(Host).join(Host.host_groups).filter(HostGroup.name==‘t1‘).group_by("Host").all()

  

group by 查询


1

select name,count(host.id) as NumberOfHosts from host right join host_group on host.id= host_group.host_id group by name;

in SQLAchemy


1

2

3

4

5

6

from sqlalchemy import func

session.query(HostGroup, func.count(HostGroup.name )).group_by(HostGroup.name).all()

#another example

session.query(func.count(User.name), User.name).group_by(User.name).all() SELECT count(users.nameAS count_1, users.name AS users_name

FROM users GROUP BY users.name

  

  

  

  

更多ORM内容猛点这里

本节作业一

题目:IO多路复用版FTP

需求:

  1. 实现文件上传及下载功能
  2. 支持多连接并发传文件
  3. 使用select or selectors

本节作业二

题目:rpc命令端

需求:

  1. 可以异步的执行多个命令
  2. 对多台机器

>>:run "df -h" --hosts 192.168.3.55 10.4.3.4 
task id: 45334
>>: check_task 45334 
>>:

时间: 2024-08-04 15:18:49

Day9 - 进程、线程、协程篇(二)的相关文章

# 进程/线程/协程 # IO:同步/异步/阻塞/非阻塞 # greenlet gevent # 事件驱动与异步IO # Select\Poll\Epoll异步IO 以及selectors模块 # Python队列/RabbitMQ队列

1 # 进程/线程/协程 2 # IO:同步/异步/阻塞/非阻塞 3 # greenlet gevent 4 # 事件驱动与异步IO 5 # Select\Poll\Epoll异步IO 以及selectors模块 6 # Python队列/RabbitMQ队列 7 8 ############################################################################################## 9 1.什么是进程?进程和程序之间有什么

初识进程 线程 协程(三):协程

协程:(又称微线程,也是交替运行) 进程-->线程-->协程 协程就是充分利用cpu给该线程的时间,多个协程只使用一个线程,某个任务遇到阻塞,执行下一个任务.如果一个线程只执行一个任务,比较容易进入阻塞队列,如果这条线程永远在工作(协程:一个线程执行多个任务),永远不会进入阻塞队列. 适用场景:    当程序中存在大量不需要CPU的操作时(IO) 特点: 每次都能从上次暂停的位置继续执行 三种实现方式: 1.yield(生成器) 生成器:一边计算一边循环的机制 def a(): ......

Python学习笔记——进阶篇【第九周】———线程、进程、协程篇(队列Queue和生产者消费者模型)

Python之路,进程.线程.协程篇 本节内容 进程.与线程区别 cpu运行原理 python GIL全局解释器锁 线程 语法 join 线程锁之Lock\Rlock\信号量 将线程变为守护进程 Event事件 queue队列 生产者消费者模型 Queue队列 开发一个线程池 进程 语法 进程间通讯 进程池 参考链接http://www.cnblogs.com/alex3714/articles/5230609.html

python的进程/线程/协程

1.python的多线程 多线程就是在同一时刻执行多个不同的程序,然而python中的多线程并不能真正的实现并行,这是由于cpython解释器中的GIL(全局解释器锁)捣的鬼,这把锁保证了同一时刻只有一个线程被执行. 多线程的特点: 线程比进程更轻量级,创建一个线程要比创建一个进程快10-100倍. 线程共享全局变量. 由于GIL的原因,当一个线程遇到IO操作时,会切换到另一个线程,所以线程适合IO密集型操作. 在多核cpu系统中,最大限度的利用多核,可以开启多个线程,开销比进程小的多,但是这并

进程线程协程那些事儿

一.进程与线程 1.进程 我们电脑的应用程序,都是进程,假设我们用的电脑是单核的,cpu同时只能执行一个进程.当程序出于I/O阻塞的时候,CPU如果和程序一起等待,那就太浪费了,cpu会去执行其他的程序,此时就涉及到切换,切换前要保存上一个程序运行的状态,才能恢复,所以就需要有个东西来记录这个东西,就可以引出进程的概念了. 进程就是一个程序在一个数据集上的一次动态执行过程.进程由程序,数据集,进程控制块三部分组成.程序用来描述进程哪些功能以及如何完成:数据集是程序执行过程中所使用的资源:进程控制

进程线程协程

一.进程 各个进程拥有自己的代码段. 进程拥有自己独立的堆和栈,既不共享堆,亦不共享栈,进程由操作系统调度. 二.线程 线程比进程轻量级,线程的切换cpu花费比进程小,线程能加大系统的并行度. 一个进程的各个线程之间是共享代码段的,各个线程都有一个程序计数器来指向下一条应该执行的指令. 线程拥有自己独立的栈和共享的堆,共享堆,不共享栈,线程亦由操作系统调度(标准线程是的). 三.协程 协程和线程一样共享堆,不共享栈,协程由程序员在协程的代码里显示调度.

进程线程协程的区别

一.概念 1.进程 进程是具有一定独立功能的程序关于某个数据集合上的一次运行活动,进程是系统进行资源分配和调度的一个独立单位.每个进程都有自己的独立内存空间,不同进程通过进程间通信来通信.由于进程比较重量,占据独立的内存,所以上下文进程间的切换开销(栈.寄存器.虚拟内存.文件句柄等)比较大,但相对比较稳定安全. 2.线程 线程是进程的一个实体,是CPU调度和分派的基本单位,它是比进程更小的能独立运行的基本单位.线程自己基本上不拥有系统资源,只拥有一点在运行中必不可少的资源(如程序计数器,一组寄存

Python并发编程-进程 线程 协程

一.进程 进程:就是一个程序在一个数据集上的一次动态执行过程. 进程由三部分组成: 1.程序:我们编写的程序用来描述进程要完成哪些功能以及如何完成 2.数据集:数据集则是程序在执行过程中所需要使用的资源 3.进程控制块:进程控制块用来记录进程的外部特征,描述进程的执行变化过程,系统可以利用它来控制和管理进程,它是系统感 知进程存在的唯一标志. 二.线程                                                                        

进程,线程,协程的相关解释 《转载》

自己不太懂这一块,转发和大家一块分享!!! 进程,由OS来管理,每个进程都有自己独立的内存空间,进程之间通讯主要是通过信号传递的方式来实现的,实现方式有多种,信号量,管道,事件等,任何一种方式的通讯效率都需要过内核,导致通讯效率比较低.由于是独立的内存空间,所以上下文切换的时候需要保存当先调用栈的信息,cpu各寄存器的信息,虚拟内存,以及打开的相关句柄等信息,所以导致上下文切换的代价非常高,因此进程并不适合大量创建. 线程:也是由OS来管理的,一个进程可以拥有多个线程,但是其中每个线程会共享父进

进程 线程 协程

进程可靠,开销大 线程共享内存,开销小 协程开销更小, python和go都有 apache是多进程,prework模式是一个进程处理一个请求 nginx也是多进程模式,一个master,多个woker,但是加入了异步非阻塞模式 mysql采用多线程,但是你ps看到的会有多个进程,是因为MySQL一直都是单进程.多线程的工作模式.只是,LinuxThreads并不是真正的线程,因此,这些进程其实还是采用系统调用 clone() 来共享同样的地址空间的.尽管采用 ps 查看的结果看起来是多进程,其