机器学习实战笔记-K近邻算法1(分类动作片与爱情片)

K近邻算法采用测量不同特征值之间的距离方法进行分类

K近邻算法特点:

优点:精度高、对异常值不敏感、无数据输入假定。

缺点:计算复杂度高、空间复杂度高。

适用数据范围:数值型和标称型。

K近邻算法原理:

存在一个样本数据集合,也称作训练样本集,并且样本集中每个数据都存在标签,即我们知道样本集中每一数据与所属分类的对应关系。输人没有标签的新数据后,将新数据的每个特征与样本集中数据对应的

特征进行比较,然后算法提取样本集中特征最相似数据(最近 邻)的分类标签。一般来说,我们只选择样本数据集中前k个最相似的数据,这就是k-近邻算法中k的出处,通常k是不大于20的整数。

最后,选择k个最相似数据中出现次数最多的分类,作为新数据的分类。

案例一.使用打斗和接吻镜头数分类电影

案例分析:
    首先我们需要知道未知电影存在多少个打斗镜头和接吻镜头,计算未知电影与样本集中其他电影的距离。按照距离递增排序,可以找到K个距离最近的电影。然后选取K个分类中出现次数最多的分类即为未知电影的种类。

k-近邻算法的一般流程:
    (1)收集数据:可以使用任何方法。
    (2)准备数据:距离计算所需要的数值,最好是结构化的数据格式。
    (3)分析数据:可以使用任何方法。
    (4)训练算法:此步驟不适用于1 近邻算法。
    (5)测试算法:计算错误率。
    (6)使用算法:首先需要输入样本数据和结构化的输出结果,然后运行女-近邻算法判定输
    入数据分别属于哪个分类,最后应用对计算出的分类执行后续的处理。

代码:

kNN.py

from numpy import *

import operator

#创建数据集

def createDataSet():

    #使用numpy中的Array类创建二维数组
    group = array([[3,104],[2,100],[1,81],[101,10],[99,5],[98,2])
    labels = [‘爱情片‘,‘爱情片‘,‘爱情片‘,‘动作片‘,‘动作片‘,‘动作片‘]
    return group,labels
‘‘‘
inx,测试向量
dataSet,数据集,二维矩阵形式
labels,类别
k,次数
‘‘‘def classify0(inx, dataSet, labels, k):
    #获取二维数组行数
    dataSetSize = dataSet.shape[0]
    #tile,将inx向量转化为与dataSet同等行数列数的二维数组
    diffMat = tile(inx,(dataSetSize,1)) - dataSet
    sqDiffMat = diffMat ** 2
    sqDistances = sqDiffMat.sum(axis = 1)
    distances = sqDistances ** 0.5
    sortedDistIndicies = distances.argsort();
    classCount = {};
    for i in range(k):
        voteIlabel = labels[sortedDistIndicies[i]]
        classCount[voteIlabel] = classCount.get(voteIlabel,0) + 1;
    #operator.itemgetter(1)指定以classCount中的value作为排序比较的数,reverse=True表示逆序显示,需要注意的是python3之后字典没有iteritems方法。
    sortedClassCount  = sorted(classCount.items(),key = operator.itemgetter(1),reverse=True)
    return sortedClassCount[0][0]

测试代码:

import kNN

group,labels = kNN.createDataSet()
kNN.classify0([18,90],group,labels,3)

结果截图

参考书籍:

<机器学习实战>

作者:Peter

出版社:人民邮电出版社

时间: 2024-12-13 16:07:46

机器学习实战笔记-K近邻算法1(分类动作片与爱情片)的相关文章

机器学习实战笔记-K近邻算法2(改进约会网站的配对效果)

案例二.:使用K-近邻算法改进约会网站的配对效果 案例分析: 海伦收集的数据集有三类特征,分别是每年获得的飞行常客里程数.玩视频游戏所耗时间百分比. 每周消费的冰淇淋公升数.我们需要将新数据的每个新数据的每个特征与样本集中数据对应的特征进行比较,然后算法提取样本集中特征最相似数据(最近邻)的分类标签.一般来说,我们只选择样本数据集中前k个最相似的数据,这就是k-近邻算法中k的出处,通常k是不大于20的整数.最后,选择k个最相似数据中出现次数最多的分类,作为新数据的分类. 流程:在约会网站上使用K

机器学习实战笔记--k近邻算法

1 #encoding:utf-8 2 from numpy import * 3 import operator 4 import matplotlib 5 import matplotlib.pyplot as plt 6 7 from os import listdir 8 9 def makePhoto(returnMat,classLabelVector): #创建散点图 10 fig = plt.figure() 11 ax = fig.add_subplot(111) #例如参数为

机器学习实战笔记-K近邻算法3(手写识别系统)

1 准备数据:将图像转换为测试向量 这次数据集还是有两种,训练数据集和测试数据集,分别有2000个,900个. 我们将把一个32*32的二进制图像矩阵转换为1 x 1024的向量,这样前两节使用的分类器就可以处理数字图像信息了. 代码: def img2vector(filename): returnVect = zeros((1,1024)) file = open(filename) for i in range(32): line = file.readline() for j in ra

《机器学习实战》-k近邻算法

目录 K-近邻算法 k-近邻算法概述 解析和导入数据 使用 Python 导入数据 实施 kNN 分类算法 测试分类器 使用 k-近邻算法改进约会网站的配对效果 收集数据 准备数据:使用 Python 解析文本文件 分析数据:使用 Matplotlib 画二维散点图 准备数据:归一化数值 测试算法:验证分类器 使用算法:构建完整可用系统 手写识别系统 准备数据 测试算法 使用算法:构建完整可用系统 总结 K-近邻算法 k-近邻分类算法概述 使用 k-近邻算法改进约会网站的配对效果 手写识别系统

《机器学习实战》——K近邻算法

原理: (1) 输入点A,输入已知分类的数据集data (2) 求A与数据集中每个点的距离,归一化,并排序,选择距离最近的前K个点 (3) K个点进行投票,票数最多的分类即为所求 优点: 简单,可用于非线性分类 缺点: 当样本不均衡时影响投票结果: 分类结果受K值影响: 时空复杂度高:需要保存全部数据O(N),每次取前k个都要与全部数据进行计算O(N),耗费内存大且计算量大 改进: 样本均衡化 太小的K值容易受噪音影响,大的K值减小噪音但会使分类边界模糊,最合适的方法是用交叉验证确定K值:先确定

机器学习随笔01 - k近邻算法

算法名称: k近邻算法 (kNN: k-Nearest Neighbor) 问题提出: 根据已有对象的归类数据,给新对象(事物)归类. 核心思想: 将对象分解为特征,因为对象的特征决定了事对象的分类. 度量每个特征的程度,将其数字化. 所有特征值构成元组,作为该对象的坐标. 计算待检测对象和所有已知对象的距离,选择距离最接近的k个已知对象 (k近邻中的k来源于此). 这k个对象中出现次数最多的分类就是待检测对象的分类. 重要前提: 需要有一批已经正确归类了的对象存在.也就是通常说的训练数据. 重

R语言学习笔记—K近邻算法

K近邻算法(KNN)是指一个样本如果在特征空间中的K个最相邻的样本中的大多数属于某一个类别,则该样本也属于这个类别,并具有这个类别上样本的特性.即每个样本都可以用它最接近的k个邻居来代表.KNN算法适合分类,也适合回归.KNN算法广泛应用在推荐系统.语义搜索.异常检测. KNN算法分类原理图: 图中绿色的圆点是归属在红色三角还是蓝色方块一类?如果K=5(离绿色圆点最近的5个邻居,虚线圈内),则有3个蓝色方块是绿色圆点的"最近邻居",比例为3/5,因此绿色圆点应当划归到蓝色方块一类:如果

机器学习实战python3 K近邻(KNN)算法实现

台大机器技法跟基石都看完了,但是没有编程一直,现在打算结合周志华的<机器学习>,撸一遍机器学习实战, 原书是python2 的,但是本人感觉python3更好用一些,所以打算用python3 写一遍.python3 与python2 不同的地方会在程序中标出. 代码及数据:https://github.com/zle1992/MachineLearningInAction/tree/master/ch2 k-近邻算法优点:精度高.对异常值不敏感.无数据输入假定.缺点:计算复杂度高.空间复杂度高

机器学习实战笔记——基于KNN算法的手写识别系统

本文主要利用k-近邻分类器实现手写识别系统,训练数据集大约2000个样本,每个数字大约有200个样本,每个样本保存在一个txt文件中,手写体图像本身是32X32的二值图像,如下图所示: 首先,我们需要将图像格式化处理为一个向量,把一个32X32的二进制图像矩阵通过img2vector()函数转换为1X1024的向量: def img2vector(filename): returnVect = zeros((1,1024)) fr = open(filename) for i in range(