Golang-interface(四 反射)

github:https://github.com/ZhangzheBJUT/blog/blob/master/reflect.md

一 反射的规则

反射是程序运行时检查其所拥有的结构,尤其是类型的一种能力;这是元编程的一种形式。它同时也是造成混淆的重要来源。

每个语言的反射模型都不同(同时许多语言根本不支持反射)。本节将试图明确解释在 Go 中的反射是如何工作的。

1. 从接口值到反射对象的反射

在基本的层面上,反射只是一个检查存储在接口变量中的类型和值的算法。在 reflect 包中有两个类型需要了解:Type 和 Value。这两个类型使得可以访问接口变量的内容,还有两个简单的函数,reflect.TypeOf 和 reflect.ValueOf,从接口值中分别获取 reflect.Type
和 reflect.Value。(注:从 reflect.Value 也很容易能够获得 reflect.Type,不过这里让 Value 和 Type 在概念上是分离的)

从 TypeOf 开始:

package main

import (
     "fmt"
    "reflect"
)

func main() {
    var x float64 = 3.4
    fmt.Println("type:", reflect.TypeOf(x))
}

这个程序打印 type: float64

接口在哪里呢,读者可能会对此有疑虑,看起来程序传递了一个 float64 类型的变量 x,而不是一个接口值,到 reflect.TypeOf。但是,它确实就在那里:如同 godoc 报告的那样,reflect.TypeOf 的声明包含了空接口:

// TypeOf 返回 interface{} 中的值反射的类型。
   func TypeOf(i interface{}) Type

当调用 reflect.TypeOf(x) 的时候,x 首先存储于一个作为参数传递的空接口中;reflect.TypeOf 解包这个空接口来还原类型信息。

reflect.ValueOf 函数,当然就是还原那个值(从这里开始将会略过那些概念示例,而聚焦于可执行的代码):

var x float64 = 3.4
fmt.Println("value:", reflect.ValueOf(x))

打印

value: <float64 Value>

除了reflect.Type 和 reflect.Value外,都有许多方法用于检查和操作它们。一个重要的例子是 Value 有一个 Type 方法返回 reflect.Value 的 Type。另一个是 Type 和 Value 都有 Kind 方法返回一个常量来表示类型:Uint、Float64、Slice 等等。同样 Value 有叫做 Int 和 Float 的方法可以获取存储在内部的值(跟 int64 和 float64 一样):

var x float64 = 3.4
v := reflect.ValueOf(x)
fmt.Println("type:", v.Type())
fmt.Println("kind is float64:", v.Kind() == reflect.Float64)
fmt.Println("value:", v.Float())

打印

type: float64
kind is float64: true
value: 3.4

同时也有类似 SetInt 和 SetFloat 的方法,不过在使用它们之前需要理解可设置性,这部分的主题在下面的第三条军规中讨论。

反射库有着若干特性值得特别说明。

  • 为了保持 API 的简洁,“获取者”和“设置者”用 Value 的最宽泛的类型来处理值:例如,int64 可用于所有带符号整数。也就是说 Value 的 Int 方法返回一个 int64,而 SetInt 值接受一个 int64;所以可能必须转换到实际的类型:

      var x uint8 = ‘x‘
      v := reflect.ValueOf(x)
      fmt.Println("type:", v.Type()) // uint8.
      fmt.Println("kind is uint8: ", v.Kind() == reflect.Uint8) // true.
      x = uint8(v.Uint()) // v.Uint 返回一个 uint64.
    
    
  • 反射对象的 Kind 描述了底层类型,而不是静态类型。如果一个反射对象包含了用户定义的整数类型的值,就像
      type MyInt int
      var x MyInt = 7
      v := reflect.ValueOf(x)‘
    
    

v 的 Kind 仍然是 reflect.Int,尽管 x 的静态类型是 MyInt,而不是 int。换句话说,Kind 无法从 MyInt 中区分 int,而 Type 可以。

2. 从反射对象到接口值的反射

如同物理中的反射,在 Go 中的反射也存在它自己的镜像。

从 reflect.Value 可以使用 Interface 方法还原接口值; 此方法可以高效地打包类型和值信息到接口表达中,并返回这个结果:

// Interface 以 interface{} 返回 v 的值。
func (v Value) Interface() interface{}

可以这样作为结果

y := v.Interface().(float64) // y 将为类型 float64。
fmt.Println(y)

通过反射对象 v 可以打印 float64 的表达值。

然而,还可以做得更好。fmt.Println,fmt.Printf 等其他所有传递一个空接口值作为参数的函数,在 fmt 包内部解包的方式就像之前的例子这样。因此正确的打印 reflect.Value 的内容的方法就是将 Interface 方法的结果进行格式化打印(formatted print routine).

fmt.Println(v.Interface())

为什么不是 fmt.Println(v)?因为 v 是一个 reflect.Value;这里希望获得的是它保存的实际的值。

由于值是 float64,如果需要的话,甚至可以使用浮点格式化:

fmt.Printf("value is %7.1e\n", v.Interface())

输出: 3.4e+00

再次强调,对于 v.Interface() 无需类型断言其为 float64;空接口值在内部有实际值的类型信息,而 Printf 会发现它。

简单来说,Interface 方法是 ValueOf 函数的镜像,除了返回值总是静态类型 interface{}。

回顾:反射可以从接口值到反射对象,也可以反过来。

3. 为了修改反射对象,其值必须可设置

var x float64 = 3.4
v := reflect.ValueOf(x)
v.SetFloat(7.1) // Error: will panic.

如果运行这个代码,它报出神秘的 panic 消息

panic: reflect.Value.SetFloat using unaddressable value

问题不在于值 7.1 不能地址化;在于 v 不可设置。设置性是反射值的一个属性,并不是所有的反射值有此特性。

Value的 CanSet 方法提供了值的设置性;在这个例子中,

var x float64 = 3.4
v := reflect.ValueOf(x)
fmt.Println("settability of v:" , v.CanSet())

打印

settability of v: false

对不可设置值调用 Set 方法会有错误。

但是什么是设置性?

设置性有一点点像地址化,但是更严格。这是用于创建反射对象的时候,能够修改实际存储的属性。设置性用于决定反射对象是否保存原始项目。当这样

var x float64 = 3.4
v := reflect.ValueOf(x)

就传递了一个 x 的副本到 reflect.ValueOf,所以接口值作为 reflect.ValueOf 参数创建了 x 的副本,而不是 x 本身。因此,如果语句

v.SetFloat(7.1)

允许执行,虽然 v 看起来是从 x 创建的,它也无法更新 x。反之,如果在反射值内部允许更新 x 的副本,那么 x 本身不会收到影响。这会造成混淆,并且毫无意义,因此这是非法的,而设置性是用于解决这个问题的属性。

这很神奇?其实不是。这实际上是一个常见的非同寻常的情况。考虑传递 x 到函数:

f(x) 由于传递的是 x 的值的副本,而不是 x 本身,所以并不期望 f 可以修改 x。如果想要 f 直接修改 x,必须向函数传递 x 的地址(也就是,指向 x 的指针):

f(&x) 这是清晰且熟悉的,而反射通过同样的途径工作。如果希望通过反射来修改 x,必须向反射库提供一个希望修改的值的指针。

来试试吧。首先像平常那样初始化 x,然后创建指向它的反射值,叫做 p。

var x float64 = 3.4
p := reflect.ValueOf(&x) // 注意:获取 X 的地址。
fmt.Println("type of p:", p.Type())
fmt.Println("settability of p:" , p.CanSet())

这样输出为

type of p: *float64
settability of p: false

反射对象 p 并不是可设置的,而且我们也不希望设置 p,实际上是 *p。为了获得 p 指向的内容,调用值上的 Elem 方法,从指针间接指向,然后保存反射值的结果叫做 v:

v := p.Elem()
fmt.Println("settability of v:" , v.CanSet())

现在 v 是可设置的反射对象,如同示例的输出,

settability of v: true

而由于它来自 x,最终可以使用 v.SetFloat 来修改 x 的值:

v.SetFloat(7.1)
fmt.Println(v.Interface())
fmt.Println(x)

得到期望的输出

7.1
7.1

反射可能很难理解,但是语言做了它应该做的,尽管底层的实现被反射的 Type 和 Value 隐藏了。务必记得反射值需要某些内容的地址来修改它指向的东西。

二结构体

在之前的例子中 v 本身不是指针,它只是从一个指针中获取的。这种情况更加常见的是当使用反射修改结构体的字段的时候。也就是当有结构体的地址的时候,可以修改它的字段。

这里有一个分析结构值 t 的简单例子。由于希望对结构体进行修改,所以从它的地址创建了反射对象。设置了 typeOfT 为其类型,然后用直白的方法调用来遍历其字段(参考 reflect 包了解更多信息)。注意从结构类型中解析了字段名字,但是字段本身是原始的 reflect.Value 对象。

type T struct {
  A int
  B string
}
t := T{23, "skidoo"}
s := reflect.ValueOf(&t).Elem()
typeOfT := s.Type()
for i := 0; i < s.NumField(); i++ {
    f := s.Field(i)
    fmt.Printf("%d: %s %s = %v\n", i,
    typeOfT.Field(i).Name, f.Type(), f.Interface())
}

程序输出:

0: A int = 23
1: B string = skidoo

还有一个关于设置性的要点:T 的字段名要大写(可导出),因为只有可导出的字段是可设置的。

由于 s 包含可设置的反射对象,所以可以修改结构体的字段。

s.Field(0).SetInt(77)
s.Field(1).SetString("Sunset Strip")
fmt.Println("t is now", t)

这里是结果:

t is now {77 Sunset Strip}

如果修改程序使得 s 创建于 t,而不是 &t,调用 SetInt 和 SetString 会失败,因为 t 的字段不可设置。

三 总结

反射的规则如下:

从接口值到反射对象的反射

从反射对象到接口值的反射

为了修改反射对象,其值必须可设置

一旦理解了 Go 中的反射的这些规则,就会变得容易使用了,虽然它仍然很微妙。这是一个强大的工具,除非真得有必要,否则应当避免使用或小心使用。

还有大量的关于反射的内容没有涉及到——channel 上的发送和接收、分配内存、使用 slice 和 map、调用方法和函数。

事例代码: https://github.com/ZhangzheBJUT/GoProject/blob/master/reflect/main.go

参考:  http://blog.golang.org/laws-of-reflection

Golang-interface(四 反射)

时间: 2024-10-13 16:08:03

Golang-interface(四 反射)的相关文章

Golang 接口与反射知识要点

目录 Golang 接口与反射知识要点 1. 接口类型变量 2. 类型断言 3. 鸭子类型 4. 反射机制 5. reflect 包 TypeOf().ValueOf() Type().Kind() Interface() 6. 反射对象的可设置性 SetXXX(), CanSet() Elem() 7. Struct 的反射 NumField(), Type.Field(i int) Value.Field(i int) 参考文档 Golang 接口与反射知识要点 这篇文章以 Go 官方经典博

Redbean:入门(四) - 反射机制 以及 事务

<?php //引入rb入口文件 include_once 'rb.php'; //定义dsn以及相关的数据 $dsn = 'mysql:host=localhost;dbname=hwibs_model'; $user = 'root'; $pass = ''; $table = 'link'; //链接数据库 R::setup($dsn,$user,$pass); //链接数据表 $handler = R::dispense($table); //inspect::反射表,将表的字段结构返回

golang:interface{}类型测试

在golang中空的interface即interface{}可以看作任意类型, 即C中的void *. 对interface{}进行类型测试有2种语法: 1. Comma-ok断言: value, ok = element.(T), 其中T是具体类型. 2. Switch测试: switch element.(type) { case T1: case T2: default: } 其中T1, T2是具体类型. 注意: element.(type)语法不能在switch外的任何逻辑里使用. 在

go语言之行--接口(interface)、反射(reflect)详解

一.interface简介 interface(接口)是golang最重要的特性之一,Interface类型可以定义一组方法,但是这些不需要实现.并且interface不能包含任何变量. 简单的说: interface是方法的集合 interface是一种类型,并且是指针类型 interface的更重要的作用在于多态实现 interface定义 type 接口名称 interface { method1 (参数列表) 返回值列表 method2 (参数列表) 返回值列表 ... } interf

golang 使用reflect反射结构体

"反射结构体"是指在程序执行时,遍历结构体中的字段以及方法. 1.反射结构体 下面使用一个简单的例子说明如何反射结构体. 定义一个结构体,包括3个字段,以及一个方法. 通过reflect包,首先查看这个结构体对应的动态类型reflect.Type和动态值reflect.Value,并查看这个结构体对应的基本类型. 接着查看结构体的字段数量,并遍历每个字段. 打印每个字段的类型.值.以及tag标签. 最后,调用结构体中的方法,并打印返回结果. 具体代码如下. package main i

《Inside C#》笔记(十四) 反射

通过反射可以在运行时动态地获取一个应用的元数据. 一 反射相关的类和方法 与反射相关的类处在System.Reflection命名空间下,包括Assembly.Module.MethodInfo.FieldInfo.PropertyInfo.EventInfo. a)Type类 System.Type类是反射机制的核心.Type类本身是一个抽象类,代表CTS通用类型系统中的某个类型. 对于已经实例化的对象,可以使用<对象名称>.GetType()来取得Type类.另外也可以使用静态方法Type

golang中四种方式实现子goroutine与主协程的同步

如何实现子goroutine与主线程的同步 第一种方式:time.sleep(),这种方式很太死板,就不演示了. 第二种方式:使用channel机制,每个goroutine传一个channel进去然后往里写数据,在再主线程中读取这些channel,直到全部读到数据了子goroutine也就全部运行完了,那么主goroutine也就可以结束了.这种模式是子线程去通知主线程结束. package main import ( "fmt" ) func main() { var chanTes

java反射(四)--反射与简单java类

一.传统简单java类 简单的java类主要是由属性所组成,并且提供有相应的setter以及getter的处理方法,同时简单java类最大的特征就是通过对象保存相应的类的属性内容,但是如果使用传统的简单java类的开发,那么也会面临非常麻烦的困难: 1 class Emp{ 2 private String ename; 3 private String job; 4 5 public void setEname(String ename) { 6 this.ename = ename; 7 }

golang - interface的作用

多态.struct 可以赋值给 interface.interface 可以转换成子接口,或者 struct. 请看go中的一段的源代码: listener, _ := net.Listen("tcp", "localhost:8000") tcpListener := listener.(*net.TCPListener) conn,_ := tcpListener.Accept() 仔细拜读源码可知: net.Listen() 返回了一个 Listener接口,