多核心Linux内核路径优化的不二法门之-slab与伙伴系统

作为这个系列的第一篇,我先来描述一下slab系统。因为近些天有和同事,朋友讨论过这个主题,而且觉得这个主题还算比较典型,所以就作为第一篇了。其实按照操作系统理论来讲,进程管理应该更加重要些,按照我自己的兴趣来讲,IO管理以及TCP/IP协议栈会更加有分量,关于这些内容,我会陆续给出。

Linux内核的slab来自一种很简单的思想,即事先准备好一些会频繁分配,释放的数据结构。然而标准的slab实现太复杂且维护开销巨大,因此便分化出了更加小巧的slub,因此本文讨论的就是slub,后面所有提到slab的地方,指的都是slub。另外又由于本文主要描述内核优化方面的内容,并不是基本原理介绍,因此想了解slab细节以及代码实现的请自行百度或者看源码。

单CPU上单纯的slab

下图给出了单CPU上slab在分配和释放对象时的情景序列:

可以看出,非常之简单,而且完全达到了slab设计之初的目标。

扩展到多核心CPU

现在我们简单的将上面的模型扩展到多核心CPU,同样差不多的分配序列如下图所示:

我们看到,在只有单一slab的时候,如果多个CPU同时分配对象,冲突是不可避免的,解决冲突的几乎是唯一的办法就是加锁排队,然而这将大大增加延迟,我们看到,申请单一对象的整个时延从T0开始,到T4结束,这太久了。
       多CPU无锁化并行化操作的直接思路-复制给每个CPU一套相同的数据结构。
       不二法门就是增加“每CPU变量”。对于slab而言,可以扩展成下面的样子:

如果以为这么简单就结束了,那这就太没有意义了。

问题

首先,我们来看一个简单的问题,如果单独的某个CPU的slab缓存没有对象可分配了,但是其它CPU的slab缓存仍有大量空闲对象的情况,如下图所示:

这是可能的,因为对单独一种slab的需求是和该CPU上执行的进程/线程紧密相关的,比如如果CPU0只处理网络,那么它就会对skb等数据结构有大量的需求,对于上图最后引出的问题,如果我们选择从伙伴系统中分配一个新的page(或者pages,取决于对象大小以及slab cache的order),那么久而久之就会造成slab在CPU间分布的不均衡,更可能会因此吃掉大量的物理内存,这都是不希望看到的。
       在继续之前,首先要明确的是,我们需要在CPU间均衡slab,并且这些必须靠slab内部的机制自行完成,这个和进程在CPU间负载均衡是完全不同的,对进程而言,拥有一个核心调度机制,比如基于时间片,或者虚拟时钟的步进速率等,但是对于slab,完全取决于使用者自身,只要对象仍然在使用,就不能剥夺使用者继续使用的权利,除非使用者自己释放。因此slab的负载均衡必须设计成合作型的,而不是抢占式的。
       好了。现在我们知道,从伙伴系统重新分配一个page(s)并不是一个好主意,它应该是最终的决定,在执行它之前,首先要试一下别的路线。
       现在,我们引出第二个问题,如下图所示:

谁也不能保证分配slab对象的CPU和释放slab对象的CPU是同一个CPU,谁也不能保证一个CPU在一个slab对象的生命周期内没有分配新的page(s),这期间的复杂操作谁也没有规定。这些问题该怎么解决呢?事实上,理解了这些问题是怎么解决的,一个slab框架就彻底理解了。

问题的解决-分层slab cache

无级变速总是让人向往。
       如果一个CPU的slab缓存满了,直接去抢同级别的别的CPU的slab缓存被认为是一种鲁莽且不道义的做法。那么为何不设置另外一个slab缓存,获取它里面的对象不像直接获取CPU的slab缓存那么简单且直接,但是难度却又不大,只是稍微增加一点消耗,这不是很好吗?事实上,CPU的L1,L2,L3 cache不就是这个方案设计的吗?这事实上已经成为cache设计的不二法门。这个设计思想同样作用于slab,就是Linux内核的slub实现。

现在可以给出概念和解释了。

Linux kernel slab cache:一个分为3层的对象cache模型。
Level 1 slab cache:一个空闲对象链表,每个CPU一个的独享cache,分配释放对象无需加锁。
Level 2 slab cache:一个空闲对象链表,每个CPU一个的共享page(s) cache,分配释放对象时仅需要锁住该page(s),与Level 1 slab cache互斥,不互相包容。
Level 3 slab cache:一个page(s)链表,每个NUMA NODE的所有CPU共享的cache,单位为page(s),获取后被提升到对应CPU的Level 1 slab cache,同时该page(s)作为Level 2的共享page(s)存在。
共享page(s):该page(s)被一个或者多个CPU占有,每一个CPU在该page(s)上都可以拥有互相不充图的空闲对象链表,该page(s)拥有一个唯一的Level 2 slab cache空闲链表,该链表与上述一个或多个Level 1 slab cache空闲链表亦不冲突,多个CPU获取该Level 2 slab cache时必须争抢,获取后可以将该链表提升成自己的Level 1 slab cache。

该slab cache的图示如下:

其行为如下图所示:

2个场景

对于常规的对象分配过程,下图展示了其细节:

事实上,对于多个CPU共享一个page(s)的情况,还可以有另一种玩法,如下图所示:

伙伴系统

前面我们简短的体会了Linux内核的slab设计,不宜过长,太长了不易理解.但是最后,如果Level 3也没有获取page(s),那么最终会落到终极的伙伴系统。
       伙伴系统是为了防内存分配碎片化的,所以它尽可能地做两件事:

1).尽量分配尽可能大的内存

2).尽量合并连续的小块内存成一块大内存

我们可以通过下面的图解来理解上面的原则:

注意,本文是关于优化的,不是伙伴系统的科普,所以我假设大家已经理解了伙伴系统。
       鉴于slab缓存对象大多数都是不超过1个页面的小结构(不仅仅slab系统,超过1个页面的内存需求相比1个页面的内存需求,很少),因此会有大量的针对1个页面的内存分配需求。从伙伴系统的分配原理可知,如果持续大量分配单一页面,会有大量的order大于0的页面分裂成单一页面,在单核心CPU上,这不是问题,但是在多核心CPU上,由于每一个CPU都会进行此类分配,而伙伴系统的分裂,合并操作会涉及大量的链表操作,这个锁开销是巨大的,因此需要优化!
       Linux内核对伙伴系统针对单一页面的分配需求采取的批量分配“每CPU单一页面缓存”的方式!
       每一个CPU拥有一个单一页面缓存池,需要单一页面的时候,可以无需加锁从当前CPU对应的页面池中获取页面。而当池中页面不足时,系统会批量从伙伴系统中拉取一堆页面到池中,反过来,在单一页面释放的时候,会择优将其释放到每CPU的单一页面缓存中。
       为了维持“每CPU单一页面缓存”中页面的数量不会太多或太少(太多会影响伙伴系统,太少会影响CPU的需求),系统保持了两个值,当缓存页面数量低于low值的时候,便从伙伴系统中批量获取页面到池中,而当缓存页面数量大于high的时候,便会释放一些页面到伙伴系统中。

小结

多CPU操作系统内核中,关键的开销就是锁的开销。我认为这是一开始的设计导致的,因为一开始,多核CPU并没有出现,单核CPU上的共享保护几乎都是可以用“禁中断”,“禁抢占”来简单实现的,到了多核时代,操作系统同样简单平移到了新的平台,因此同步操作是在单核的基础上后来添加的。简单来讲,目前的主流操作系统都是在单核年代创造出来的,因此它们都是顺应单核环境的,对于多核环境,可能它们一开始的设计就有问题。
       不管怎么说,优化操作的不二法门就是禁止或者尽量减少锁的操作。随之而来的思路就是为共享的关键数据结构创建"每CPU的缓存“,而这类缓存分为两种类型:

1).数据通路缓存。

比如路由表之类的数据结构,你可以用RCU锁来保护,当然如果为每一个CPU都创建一个本地路由表缓存,也是不错的,现在的问题是何时更新它们,因为所有的缓存都是平级的,因此一种批量同步的机制是必须的。

2).管理机制缓存。

比如slab对象缓存这类,其生命周期完全取决于使用者,因此不存在同步问题,然而却存在管理问题。采用分级cache的思想是好的,这个非常类似于CPU的L1/L2/L3缓存,采用这种平滑的开销逐渐增大,容量逐渐增大的机制,并配合以设计良好的换入/换出等算法,效果是非常明显的。

版权声明:本文为博主原创文章,未经博主允许不得转载。

时间: 2024-08-25 15:51:42

多核心Linux内核路径优化的不二法门之-slab与伙伴系统的相关文章

多核心Linux内核路径优化的不二法门-序

提到这个主题,我感到愤怒,我觉得自己被玩了一万次还保持着君子的无谓.其实内心充满了邪火!也许我应该放弃,也许应该看看这个世界,我无法. 何时?何地?何人?何事? 何苦!何如!何妨!何必! 走过,遇见,相知,相恋! 相亲,黯淡,相顾,长叹!十年!又有谁知道我的罪?!燃尽的激情让我选择放弃:然而是意义让我重新开始! 是什么力量让崩溃来的如此彻底,然而又是什么证据表明苏醒是如此的无疑! 心缥缈,人逍遥,悲欢泪,何足道: 天昏黄,地枯槁,晨曦露,苞涵笑. -----彼时,此刻

linux 内核参数优化

linux 内核参数优化 Sysctl命令及linux内核参数调整 一.Sysctl命令用来配置与显示在/proc/sys目录中的内核参数.如果想使参数长期保存,可以通过编辑/etc/sysctl.conf文件来实现. 命令格式: sysctl [-n] [-e] -w variable=value sysctl [-n] [-e] -p (default /etc/sysctl.conf) sysctl [-n] [-e] –a 常用参数的意义: -w  临时改变某个指定参数的值,如 # sy

Linux内核socket优化项

Linux内核socket优化项 vi /etc/sysctl.confnet.core.netdev_max_backlog = 30000  每个网络接口接收数据包的速率比内核处理这些包的速率快时,允许送到队列的数据包的最大数目 net.core.somaxconn = 262144   用来限制监听(LISTEN)队列最大数据包的数量,超过这个数量就会导致链接超时或者触发重传机制 net.core.rmem_default = 8388608    接收套接字缓冲区大小的默认值(以字节为单

linux内核参数优化1

net.ipv4.tcp_fin_timeout = 2net.ipv4.tcp_tw_reuse = 1net.ipv4.tcp_tw_recycle = 1net.ipv4.tcp_syncookies = 1net.ipv4.tcp_keepalive_time = 600net.ipv4.ip_local_port_range = 4000     65000net.ipv4.tcp_max_syn_backlog = 16834net.ipv4.tcp_max_tw_buckets =

linux内核高级优化脚本

linux内核高级优化脚本可以用于hadoop生态圈环境的组件安装 linux内核调优具体的每一步的解释请参考 03搭建cdh备注:使用与centos6和centos7两个系统版本执行 [[email protected] scripts]# pwd /opt/scripts [[email protected] scripts]# ll total 12 -rw-r--r-- 1 root root 3837 Apr 22 14:34 adlinuxopt.sh -rw-r--r-- 1 ro

Linux内核高性能优化【生产环境实例】

话不多说,直接上线上服务器的sysctl.conf文件,当然,这是前辈大牛的功劳: #---内核优化开始-------- # 内核panic时,1秒后自动重启 kernel.panic = 1 # 允许更多的PIDs (减少滚动翻转问题); may break some programs 32768 kernel.pid_max = 32768 # 内核所允许的最大共享内存段的大小(bytes) kernel.shmmax = 4294967296 # 在任何给定时刻,系统上可以使用的共享内存的

nginx 高并发参数配置及linux内核参数优化

一.一般来说nginx 配置文件中对优化比较有作用的为以下几项: 1.  worker_processes 8; nginx 进程数,建议按照cpu 数目来指定,一般为它的倍数 (如,2个四核的cpu计为8). 2.  worker_cpu_affinity 00000001 0000001000000100 00001000 00010000 00100000 01000000 10000000; 为每个进程分配cpu,上例中将8 个进程分配到8 个cpu,当然可以写多个,或者将一个进程分配到

linux内核参数优化调优

TCP/IP及内核参数优化调优 Linux下TCP/IP及内核参数优化有多种方式,参数配置得当可以大大提高系统的性能,也可以根据特定场景进行专门的优化,如TIME_WAIT过高,DDOS攻击等等.如下配置是写在sysctl.conf中,可使用sysctl -p生效,相关参数仅供参考,具体数值还需要根据机器性能,应用场景等实际情况来做更细微调整. net.core.netdev_max_backlog = 400000#该参数决定了,网络设备接收数据包的速率比内核处理这些包的速率快时,允许送到队列

Nginx做web服务器linux内核参数优化

关于Linux内核参数的优化: net.ipv4.tcp_max_tw_buckets = 6000 timewait的数量,默认是180000. net.ipv4.ip_local_port_range = 1024 65000 允许系统打开的端口范围. net.ipv4.tcp_tw_recycle = 1 启用timewait快速回收. net.ipv4.tcp_tw_reuse = 1 开启重用.允许将TIME-WAIT sockets重新用于新的TCP连接.